Золотое сечение в архитектуре

Почему нас так привлекают строения древней архитектуры, при виде которых мы испытываем гармонию и умиротворение? Все они были построены на основе золотого сечения, данная зависимость прослеживается и в средневековье, и в современном мире. Математическая пропорция встречается повсеместно: это и ракушки моллюсков, и знаменитые картины художников, и строение человеческого тела, и даже египетские пирамиды. Сегодня об обзоре редакции Homius.ru расскажем простыми словами, как и, самое главное, зачем нужно использовать божественную гармонию чисел, и как она поможет в строительстве собственного дома и оформлении интерьера.

Винтовая лестница построена по принципу золотого сечения

Содержание

Просто о сложном: что это такое – правило золотого сечения

Золотое сечение –это правило общей пропорции, которая создает универсальную композицию. Математики называют её формулой божественной гармонии или асимметричной симметрией.

Это интересно! Общее определение правила ЗС –меньшая величина относится к большей, как большая к целому. Было рассчитано приблизительное число, равное 1,6180339887, это и есть коэффициент золотого сечения. Если смотреть в процентном соотношении, то в одном целом меньшая величина занимает 38%, большая – 62%.

Признано считать, что ЗС пришло к нам еще с древней Греции, но есть и такое мнение, что его греки подсмотрели у египтян. Если проанализировать архитектуру Египта того времени, можно чётко проследить соблюдение математической гармонии. Необычные свойства числовой зависимости стали причиной мистического отношения к золотому сечению:

  • практически все живые организмы можно привести к принципу числовой зависимости. Например, тело человека, количество семечек в подсолнухе, структуру ДНК, произведения искусства и вирусную бактерию;
  • данная зависимость чисел характерна только для биологических существ и кристаллов, все остальные неживые объекты природы крайне редко обладают золотой пропорцией;
  • именно математическая пропорция в строении биологических объектов оказалась оптимальной для выживания.

Идеальный пример ЗС в природе — раковина морского моллюска

Экскурс в историю: кто придумал золотое сечение

Представление о золотой пропорции имели и древние греки, и египтяне, известно было о ней и на Руси. Но впервые ещё в 1509 году в книге «Божественная Пропорция», иллюстрации к которой принадлежат Леонардо да Винчи, монах Лука Пачоли дал научное определение правилу. Он видел в золотом сечении божественное единство:

  • маленький отрезок – это сын;
  • большой – отец;
  • весь отрезок – это святой дух.

Это интересно! Историки присваивают Леонардо да Винчи определение термина ЗС, поскольку он долгое время изучал божественную закономерность и воплощал её принцип в своих творениях.

Вторую жизнь ЗС получило в 1855 году благодаря философу Адольфу Цейзингу. Он доработал теорию до абсолютного идеала, и она стала универсальной для всех проявлений. Все это он описал в своей книге «Математическое Эстетство», на которое в свое время обрушилось много негатива и критики.

Золотое сечение в божественной пропорции

Принцип расчета и построения золотого сечения

Примеры пропорции золотого сечения можно видеть при строительстве многих архитектурных сооружений, только нужно знать, как правильно его увидеть. Для этого достаточно посмотреть на строение всего 5 минут.

Как определить число золотого сечения

С пропорцией ЗС связывают астронома из Италии Фибоначчи, он вывел ряд чисел, в котором значение каждого последующего равно сумме двух предыдущих. Сегодня эта закономерность известна как ряд Фибоначчи:

Данную формулу применяют для расчета пропорций золотого сечения в любой отрасли, на практике чаще всего используют округленные значения 0,62 и 0,38.

Ряд Фибоначчи в церкви Покрова на Нерли

Как рассчитать золотое сечение на простейшем примере

Проще всего объяснить гармонию ЗС можно на примере обычного куриного яйца, точнее на удалении всех точек скорлупы от центра тяжести. Именно форма оболочки, а не её прочность, обеспечила выживаемость птиц столь долгое время и в любых условиях.

Если взять обычный отрезок, который состоит из нескольких маленьких, их длины относятся к большей величине как 0,62. Это показывает, как можно разбить целую линию для получения идеальной пропорции.

Простой пример золотого сечения в курином яйце

Как построить золотое сечение на примере прямоугольника и спирали

Если построить золотой прямоугольник, используя ряд Фибоначчи, он будет выглядеть как единое целое. Рассмотрим зависимость на примере:

  • нужно нарисовать квадрат со стороной 1 и рядом ещё один аналогичный;
  • над ними разместить квадрат со стороной 2;
  • слева гармонично помещается квадрат с гранью 3;
  • ниже – квадрат со стороной 5;
  • справа пространство займет квадрат с гранью 8;
  • площадь прямоугольника 8×13, в котором 13 — это следующее число ряда;
  • если разделить на калькуляторе следующее число на предыдущее, получится значение золотого сечения 1,62, причём, чем больше числа, тем меньшая погрешность в их отношении;
  • если по этому принципу построить спираль, каждую четверть витка она будет расширяться именно на значение ЗС.

Принцип золотого сечения в прямоугольникеПостроение золотой спирали из прямоугольника

На видео можно более подробно узнать про магию чисел Фибоначчи:

Божественная гармония золотого сечения в архитектуре: фото древних построек и примеры современного строительства

Многие древние здания, которые сохранились до наших времен, подтверждают мнение, что они были построены по правилам идеальной пропорции. Это резиденции королей, церкви, общественные сооружения. Рассмотрим на примерах принцип золотого сечения в разных странах.

Тайны древнеегипетской архитектуры

В архитектуре Древнего Египта по правилам золотой пропорции была построена пирамида Хеопса. Глядя на творение строителей, можно увидеть треугольник с прямым углом, один катет которого является высотой, второй – половиной длины основания. Если взять отношение гипотенузы к меньшей стороне, получим идеальное значение 1,61950 или 1,62.

Это интересно! Форма пирамиды имеет ещё одно неоспоримое свойство. В нём сталь становится прочнее, вода дольше сохраняет свежий вкус, и быстрее растут живые растения. Много лет ученые пытаются разгадать этот феномен, но пока его научное решение не найдено.

Было замечено, что пирамида улучшает психоэмоциональное состояние человека, в её области уменьшаются вредоносные излучения, пропадают геопатогенные зоны.

Идеальная пропорция золотого сечения в пирамиде

Идеальные пропорции в древней Греции

Идеальная пропорциональность делает архитектурные объекты запоминающимися. Яркий представитель ЗС из древней Греции – Парфенон, который возведен в 5 веке до нашей эры. Если взять отношение его высоты к ширине, получится практически идеальное число 0,618.

Ученые определили, что для абсолютного золотого числа нужно отнять от высоты 14 см и прибавить их к ширине. Учитывая строение сооружения, очень похоже, что это было сделано древними архитекторами Иктином и Калликратом намеренно, поскольку фасад немного сужается в верхней части и отклоняется от золотого прямоугольника. Но общие пропорции ЗС соблюдены.

Принцип идеальной пропорции в древнегреческом Парфеноне:

Памятники архитектуры средневековья

Прекрасным памятником истории архитектуры средневековья, сохранившимся до нашего времени, является собор Парижской Богоматери или Нотр-Дам де Пари.

В здании очень заметно желание архитектора соблюсти гармонию и целостностьАнализируя строение, принцип ЗС можно видеть на нескольких участках

Архитектура России

Ряд Фибоначчи – это своеобразная матрица, с помощью которой анализируют любое архитектурное сооружение. Чтобы было проще ориентироваться, можно построить на принципе золотого сечения циркуль Фибоначчи.

Разметчик Фибоначчи построен по правилу золотого сеченияИспользовать циркуль можно практически на любом архитектурном сооруженииЧтобы исследовать большие объекты, нужно отойти на некоторое расстояние и приложить циркуль

Золотое сечение в архитектуре Москвы

Выдающееся здание МГУ на Воробьевых горах было построено в послевоенное время. В те годы это было самое высокое строение, состоящее из пяти композиционных групп, которые венчает центральная башня. Здесь чётко прослеживается треугольник с прямым углом, гипотенуза которого захватывает пристройки и проходит через угол здания.

В МГУ золотому сечению подчиняются высоты

Золотые пропорции прослеживаются и в работах русского зодчего Матвея Казакова.

Кремлевское здание сенатаПречистенский дворецГолицынская больницаДом союзов — благородное собрание

Использовал это прием и архитектор Василий Баженов, его здания причислены к историческим памятникам

Дом Пашкова

Архитектура в Санкт-Петербурге

Живым примером золотого сечения является Исаакиевский собор.

ЗС в Исаакиевском соборе

В первую очередь можно проанализировать его ширину, равную 400 единицам:

  • при делении числа 400 на значение золотого сечения получим приблизительно 248;
  • при дальнейшем делении 248/1,618=153;
  • основная часть собора вписывается в золотой прямоугольник, длинная сторона которого равна 400, ширина – 248.

По высоте здания ЗС можно видеть у купола, благодаря этому внешнее восприятие памятника архитектуры становится гармоничным.

На фото чётко прослеживаются золотой треугольник и прямоугольник в Исаакиевском соборе

Приведем ещё несколько примеров золотого сечения в архитектуре Санкт-Петербурга.

Кунсткамера

Кунсткамера была построена ещё в 1718 году, руководил строительством немецкий архитектор Георг Маттарнови. Она представляет собой 2 корпуса по 3 этажа, между ними возведена куполообразная многоярусная конструкция в виде башни.Золотое сечение в соотношении сторон можно наблюдать в длине корпусов и в высотах разных уровней.

В башне по всей высоте четко прослеживается равнобедренный треугольник, а это значит, что Кунсткамера построена по общему принципу ЗС

Торговый дом Эсдерс и Схейфальс

ЗС в здании, возведенном в 1907 году, наблюдается в следующих размерах:

  • 671, 414, 256, 98, 60, 37 и 23.

Композиция смотрится гармонично благодаря золотому соблюдению высотных величин.

Основной элемент здания — шпиль

Дом Советов

Дом Советов был возведен по проекту Троцкого в 1941 году, основной акцент выполняют портик по центру с 14 колоннами и скульптурный ансамбль. По обе стороны расположены два корпуса высотой в 5 этажей. Длина здания – 1472 единицы, если разделить его на значение Ф = 1,618, получим размерный ряд:

  • 1472, 909, 562, 347, 214, 132, 81, 50. К ним относятся высота входа, всего сооружения, различных элементов.

Анализ длин и высот Дома Советов

Золотой прямоугольный треугольник идеально вписывается в центр здания, его вершина совпадает с вершиной Дома Советов, а гипотенуза заканчивается в конце бокового крыла. Если построить равнобедренный золотой треугольник, его грани будут проходить через точки в верхней части основного входа.

Очевидная пропорциональность Дома Советов

Примеры золотого сечения в современной архитектуре

В современной архитектуре формула расчёта золотого сечения позволяет проектировать уникальные формы, которые несут прочность, спокойствие и красоту.

Правило золотого сечения при строительстве частного дома

Многие архитекторы, которые разрабатывают проекты частных домов, используют правило золотого сечения. У клиентов создается ощущение, что все детали проработаны для максимально комфортного проживания. При грамотном выборе площадей жильцы на психологическом уровне ощущают умиротворение и успокоение.

Что нужно знать при проектировании фасада

В современном строительстве при проектировании домов кроме ряда Фибоначчи используют ещё один метод, основоположником которого был архитектор из Франции Ле Корбюзье. Он принимал за основу рост будущих владельцев усадьбы и, исходя их этого, рассчитывал параметры строения и комнат. Благодаря такому подходу дом получался не только гармоничный, но и максимально комфортный с индивидуальными чертами хозяев.

Идеальные пропорции частного дома

Золотое сечение в оформлении интерьера

Даже если дом возведен по типовому проекту, можно внутри его создать интерьер, максимально приближенный к идеальной пропорции 1:1,62. Например, благодаря дополнительным перегородкам или расположению мебельных групп, а также можно изменить дверные или оконные проемы, чтобы соотношение ширины к высоте было в золотом сечении.

Аналогичная ситуация и с цветовым оформлением интерьера, здесь действует упрощенное правило:

  • 60% — основная палитра;
  • 30% — дополнительный оттенок;
  • 10% — близкий тон, который усиливает восприятие основного и дополнительного.

Правило 1/1,62 в интерьере должно сопровождаться во всем: в соотношении мебели к общей площади, в ее высоте по отношению к параметрам комнаты.

Принцип золотого сечения не является новым в архитектуре, поскольку в прежние времена здания строились не по типовым проектам, а с учетом индивидуальных особенностей будущих владельцев. Такие строения выглядят даже спустя многие года гармоничными и привлекательными. Интерьер, оформленный по правилам идеальной пропорции, позволяет грамотно использовать все площади.

Теперь вы сможете самостоятельно и правильно применить божественную гармонию математических цифр, планируя строительство дома или оформляя свой интерьер. Более того, интересную комбинацию цифр можно использовать и в экономике, и в расчете инвестиций и во всех деталях, с которыми соприкасается человек ежедневно.

Если у вас ещё остались вопросы, предлагаем посмотреть видео, в котором простыми словами разъяснен принцип действия золотого сечения:

LiveInternetLiveInternet

В этой статье речь пойдет об очень важном секрете, о котором знают немногие бизнесмены, и незнание которого часто приводит к развалу бизнеса. Есть такие известные понятия, как «золотое сечение» и «числа Фибоначчи».
Ряд Фибоначчи – это когда сумма двух предыдущих чисел дает следующее число. Т.е. 0,1,1,2,3,5… и т.д. В природе все построено по этому принципу. Например, если подсчитать веточки дерева, можно убедиться, что с увеличением радиуса кроны их число увеличивается по закону золотого сечения.
Прямоугольник с отношением сторон 0.618 и 0.382 — золотой прямоугольник. Если от него отрезать квадрат, то останется вновь золотой прямоугольник. Этот процесс можно продолжать до бесконечности.
Другой всем знакомый пример — пятиконечная звезда (она же магический символ, пентаграмма), в которой каждая из пяти линий делит другую в точке золотого сечения, а концы звезды являются золотыми треугольниками.
Скелет человека также построен по этому закону. Он выдержан в пропорции, близкой к золотому сечению. И чем ближе пропорции к формуле золотого сечения, тем более идеальным выглядит внешность человека. Если расстояние между ступней человека и точкой пупа = 1, то рост человека = 1.618 (разумеется, это в идеале). Число 1.618 и есть коэффициент золотого сечения.
Но какое отношение это имеет к бизнесу, деньгам, финансам?! Так вот, самое непосредственное! Закон Фибоначчи и есть та самая формула, по которой добывают богатство во все времена. И все, что вы будете предпринимать в соотношении с числами золотого сечения, будет обречено на успех. И наоборот, игнорирование этого правила приводит к краху. Это своего рода магия денег.
Рассмотрим применение закона золотого сечения в бизнесе на практике. Допустим, вы купили ящик апельсинов за 1 доллар (доллар в данном случае условная единица) и продали за 2 доллара. Получили прибыль 100%. Как действовать дальше? Купить на эти 2 доллара еще 2 ящика и продать?
НЕТ! Вот это и есть самая распространенная ошибка горе-бизнесменов! Правильно будет, в соответствии с законом золотого сечения, купить еще один ящик, продать с теми же 100% прибыли, и только потом купить 2 ящика. То есть действуем по указанному принципу:
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,
6765,10946,17711,28657,46368,75025,121393,196418,317811,
514229,832040,1346269…
Как видим, всего за 32 цикла мы достигли прибыли свыше миллиона! И при этом у нас еще и всегда оставались «лишние» деньги! Кроме того, этот принцип — хорошая страховка от форс-мажорных обстоятельств. Ведь если в самом начале, получив прибыль в 1 доллар и имея 2 доллара на руках и вложив их все сразу, есть риск потерять все. А так у нас доллар в запасе остался, во всяком случае, не в минус уйдем.
Особенно важна эта схема при игре на бирже и прочих сравнительно рискованных финансовых операциях. Пример схематичный, его можно адаптировать к прибыли и в 20%, и к любой другой. Используйте в своих расчетах число 1,618 – коэффициент, по которому следует увеличивать финансы, и вам будет сопутствовать успех!
Любую деятельность разумно соотносить с принципом золотого сечения. Это самый надежный и безопасный путь. Главное, определиться с единицей измерения. Это может быть время, этапы в работе и т.д. и т.п. Обогащайтесь также поэтапно, согласуя свои шаги с законами природы.

Helgus ~ µастер ~ Kласс: Это незавершённая статья по ивентологии и её применениям

(Рис.1) Cхема пропорциональных отрезков золотого сечения

‎Золотое сечение (золотая пропорция, гармоническое деление, деление в крайнем и среднем отношении) — соотношение числовых величин в математике и искусстве: отношение суммы двух величин к большей из них равно отношению большей величины к меньшей (рис. 1).

Золотое сечение (отношение) — иррациональное число, приблизительно равное 1.6180339887.

Где:

  • (a + b) — весь отрезок (крайний член)
  • a — большая её часть(средний)
  • b — меньшая её часть(крайний)

Золотое сечение в отличие от пропорции содержит произведение определённых значений средних членов (вместо c·d имеем a·a или a·c = a·a). Не любое деление отрезка даёт среднее сечение. Например, деление отрезка на части, выраженных рациональными числами или на равные части, не даёт золотого сечения.

Математические и эстетические свойства Править

(Рис.2) Построение золотого прямоугольника

Обычно названия золотого сечения (отношения), часто встречается как золотое сечение (латинский: sectio aurea) и золотая середина .,, Другие описания, с которыми часто сталкиваются, применяют выражения как необычное или как среднее сечение , как божественная пропорция, что на (латинском: sectio divina); также как золотая пропорция, золотое сокращение, золотое число, а также как среднее из Phidias.,,Золотое сечение часто обозначается греческой буквой — $ \!\phi $.

Фигура (см. Рис.2) иллюстрирует геометрические отношения, которые определяют эту константу:

$ \frac 1 \varphi = \varphi — 1;\; \varphi = \frac{1 + \sqrt{5}}{2} \approx 1{.}6180339887 $

По крайней мере со времён Ренессанса, много художников и архитекторов строили свои работы так, чтобы приблизить золотое сечение (отношение) к правилам золотого прямоугольника, в котором отношение более длинной стороны к корткой было золотым отношением, равной золотой пропорции, удовлетворящее эстетические восприятия.

Алгебраически нахождение золотого сечения (см. Рис.2) отрезка длины $ \,\phi $ сводится к решению уравнения:

$ \frac{a}{x}= \frac{x}{a-x} = \phi \, $, где $ \!\phi $ = 1.6180339887 (для сравнения (см. Рис.1) $ \! \frac {a}{x}=\frac {a}{b} $),

откуда:

$ x=a \ (\sqrt{5}-1)/2 \approx 0.618 \ a, $ $ a-x=a \ (3-\sqrt{5})/2 \approx 0.382 \ a. $

Отношение $ \frac{x}{a}\, $ может быть также выражено приближенно дробями

$ 2/3, \ \ 3/5, \ \ 5/8, \ \ 8/13, \ \ 13/21, \ldots \ , $

где$ 2,3,5,8,13,21,\ldots $ — числа Фибоначчи.

Иррациональное алгебраическое число Править

Отношение частей в этой пропорции выражается квадратичной иррациональностью

$ \varphi = \frac{ \sqrt{5}+1}{2} \approx 1{,}6180339887\dots $

  • $ \varphi $ (Греческая буква «фи», первая буква имени Фидиас (Phidias), введённая для обозначения золотого сечения) — иррациональное алгебраическое число, положительное решение квадратного уравнения

$ \varphi^2 = \varphi + 1. $

  • $ \varphi $ представляется в виде бесконечной цепочки квадратных корней:

$ \varphi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + …}}}}. $

  • $ \varphi\; $ представляется в виде бесконечной цепной дроби

$ \varphi = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1+\,\cdots}}}, $ подходящими дробями которой служат отношения последовательных чисел Фибоначчи $ \frac{F_{n+1}}{F_n} $. Таким образом, $ \varphi = \lim_{n\to\infty} \frac{F_{n+1}}{F_n} $.

Золотое сечение в пятиконечной звезде

Построение золотого сечения

В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος) впервые встречается в «Началах» Евклида (ок. 300 до н. э.), где оно применяется для построения правильного пятиугольника.

  • В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении (на приведённом рисунке отношение красного отрезка к зелёному, так же как зелёного к синему, так же как синего к фиолетовому, равны $ \varphi $).
  • Геометрическое построение. Золотое сечение отрезка $ AB $ можно построить следующим образом: в точке $ B $ восстанавливают перпендикуляр к $ AB $, откладывают на нём отрезок $ BC $, равный половине $ AB $, на отрезке $ AC $ откладывают отрезок $ AD $, равный $ AC-CB $, и наконец, на отрезке $ AB $ откладывают отрезок $ AE $, равный $ AD $. Тогда

$ \varphi=\frac{|AB|}{|AE|}=\frac{|AE|}{|EB|}. $

История Править

Парфенон иллюстрирует золотое сечение своими пропорциями

Выражение «деление в крайнеи и среднеи отношении», которое использовалось ещё в 3-м тысячелетии до н. э., сохранялось до 18-го века.

В дошедшей до нас античной литературе золотое сечение впервые встречается во II книге «Начал» Евклида, где дается геометрическое построение золотого сечения, равносильное решению квадратного уравнения.

$ \!x(a+x)=a^2 $

Евклид применяет золотое сечение при построении правильных 5- и 10-угольников (IV и XIV книги), а также в стереометрии при построении правильных 12- и 20-гранников. Несомненно, что золотое сечение было известно и до Евклида. Весьма вероятно, что задача золотого сечения была решена еще пифагорейцами, которым приписываются построение правильного 5-угольника и геометрические построения, равносильные решению квадратных уравнений. После Евклида исследованием золотого сечения занимался Гипсикл (2 в. до н. э.), Папп Александрийский (3 в. н. э.) и др.

В средневековой Европе с золотым сечением познакомились по арабским переводам «Начал» Евклида. Переводчик и комментатор Евклида Дж.Кампано из Новары (13 в.) добавил к XII книге «Начал» предложение, содержащее арифметическое доказательство несоизмеримости отрезка и обеих частей его золотого сечения.

В 15—16 в.в. усилился интерес к золотому сечению среди ученых и художников в связи с его применениями как в геометрии, так и в искусстве, особенно в архитектуре. Леонардо да Винчи и Фра Лука Пачоли посвятили золотому сечению трактат «О божественной пропорции» (1509). Одна из страниц рукописей Леонардо того времени посвящёна золотым пропорциям человека (рисунок Леонардо на этой странице широко известен как «Vitruvian Man»).

Michael Maestlin в 1597 г. первым опубликовал десятичное приближение золотого сечения.

О золотом сечении много писал в одном из своих ранних произведений И.Кеплер (1596). Термин «золотое сечение» ввел Леонардо да Винчи (конец 15 века). Золотое сечение или близкие ему пропорциональные отношения легли в основу композиционного построения многих произведений мирового искусства (главным образом в архитектуре античности и Возрождения). Например, античный Парфенон и средневековая Капелла Пацци во Флоренции, архитектор Ф.Брунеллески (15 в.).

Золотое сечение и гармония в искусстве Править

Длительное время существовало общепринятое суждение, что объекты, содержащие в себе «золотое сечение», воспринимаются людьми как наиболее гармоничные. Например, пропорции золотого сечения находят в пирамиде Хеопса, в соотношении размеров некоторых храмов, барельефов; предметов быта и украшений из гробницы Тутанхамона. По мнению первых исследователей, это свидетельствует, что египетские мастера пользовались соотношениями золотого сечения при их создании.

Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. Древнеегипетский зодчий Хесира, вырезанный на деревянной доске, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого сечения. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции. В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления, и т. д. и т. п.

К тем же выводам пришёл Розенов в статье «Закон золотого сечения в поэзии и музыке» (1925) на примере произведений Баха, Моцарта, Бетховена.

Критика. Править

К подобным утверждениям следует относиться с должной критичностью, поскольку во многих случаях это может оказаться результатом подгонки или совпадения (эффект «числовой мистики»). Есть обоснованные данные, что значимость золотого сечения в искусстве, архитектуре и в природе преувеличена, и основывается на ошибочных расчётах.

При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги A0 и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2 : 3), размеры кино- и телевизионных экранов — например, 3:4 или 9:16) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции «слишком вытянутыми».

Примеры сознательного использования Править

Золотое сечение и зрительные центры

Золотое сечение в видоискателях фотокиноаппаратры

Начиная с Леонардо да Винчи, многие художники сознательно использовали пропорции «золотого сечения». Российский зодчий Жолтовский также использовал золотое сечение в своих проектах.

Известно, что Сергей Эйзенштейн искусственно построил фильм «Броненосец Потёмкин» по правилам золотого сечения. Он разбил ленту на пять частей. В первых трёх действие разворачивается на корабле. В двух последних — в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения. В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета, настроения. Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения, он воспринимается как наиболее закономерный и естественный.

Другим примером использования правила «золотого сечения» в киноискусстве служит расположение основных компонентов кадра в особых точках — «зрительных центрах». Часто используются четыре точки, расположенные на расстоянии 3/8 и 5/8 от соответствующих краёв плоскости.

ХронологияПравить

Греческая буква «фи», первая буква имени Фидиас (Phidias), введённая для обозначения золотого сечения Марком Баром в начале 20 в.; заглавная буква обычно используется для обратного отношения: Ф=1/φ

  • Фидиас (Phidias) (490–430 BC) создал статуи Парфенона, которые своими пропорциями воплощают золотое сечение.
  • Платон (427–347 BC) в своем труде Timaeus описывает пять возможных правильных геометрических тел (Платоновы тела: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр), часть из которых имеет отношение к золотому сечению.
  • Евклид (325–265 BC) в своих Элементах дал первое письменное определение золотого сечения, которое в переводе было названо «деление в крайнем и среднем отношении (extreme and mean ratio)» (греч. ακροςκαιμεσοςλογος).
  • Фибоначчи (Fibonacci) (1170–1250) открыл числовой ряд, теперь называемый его именем, который тесно связан с золотым сечением.
  • Фра Лука Пачоли (Fra Luca Pacioli) (1445–1517) совместно с Леонардо определил золотое сечение как «божественную пропорцию» в их труде «Божественная пропорция (Divina Proportione)».
  • Леонардо да Винчи (1451–1519) совместно с Пачоли определил золотое сечение как «божественную пропорцию» в их труде «Божественная пропорция (Divina Proportione)» и, по-видиому, ввел термин золотое сечение (лат. gold aurea); см. Vitruvian Man.
  • Иоганн Кеплер (Johannes Kepler) (1571–1630) называет золотое сечение «драгоценным камнем»: «Геометрия обладает двумя великими сокровищами: теорема Пифагора и деление отрезка в крайнем и среднем отношении; первое можно сравнить с мерой золота, второе назвать драгоценным камнем».
  • Чарльз Боне (Charles Bonnet) (1720–1793) указывает, что в спиралях растений, закрученных по и против часовой стрелки, часто обнаруживается ряд Фибоначчи.
  • Мартин Ом (Martin Ohm) (1792–1872) был первым, кто систематически использовал слова золотое сечение для описания этого отношения.
  • Эдвард Лукас (Edouard Lucas) (1842–1891) вводит числовую последовательность, теперь известную как последовательность Фибоначчи в её нынешнем виде.
  • Марк Барр (Mark Barr) (20 в.) вводит «Ф» — первую греческую букву имени Фидиас для обозначения золотого сечения.
  • Роджер Пенроуз (Roger Penrose) (р.1931) открывает симметрию, использующую золотое сечение в области «апериодических черепиц», которая привела к новым открытиям в квазикристаллах.

См.такжеПравить

  • Золотые пропорции человека
  • Гармония (в эвентологии)
  • Золотое сечение (в музыке)
  • Золотое сечение (в примерах)
  • Пропорция (математика)

Ссылки Править

Числа с собственными именами

Вещественные

Золотое сечение • e (число Эйлера) • Пи • Число Скьюза

Натуральные

Чёртова дюжина • Число зверя • Число Рамануджана — Харди

Степени десяти

Мириада • Гугол • Асанкхейя • Гуголплекс

Степени тысячи

Тысяча • Миллион • Миллиард • Биллион • Триллион … • … Центиллион • Зиллион

Степени двенадцати

Дюжина • Гросс • Масса

Двенадцатеричная система счисления

Литературные • меры счёта • Доцанд • Мириад

Правило золотого сечения в архитектуре, строительстве и дизайне

Наблюдения за природой и попытки раскрыть тайны ее прекрасных созданий принесли немало открытый. Одно из них — золотое сечение. Это некоторая закономерность, которой подчиняется все, что мы называем красивым. Люди, животные, цветы, здания, галактики…

Что такое золотое сечение и как его понимать

Часто мы сталкиваемся с домами, предметами, строениями, растениями, которые нас чем-то завораживают. Люди издавна пытались понять, почему одно нам кажется красивым, другое нет, искали закономерности. И вроде нашли. Это некоторое соотношение частей, которое назвали золотым сечением.

О том, кто и когда придумал золотое сечение никто не знает точно. Кто-то приписывает открытие Пифагору, но первое упоминание нашли еще в «Началах» Евклида, а жил он в 3 веке до нашей эры. Так что находка явно давняя. Именно по этому принципу построены древнегреческие и римские храмы. Конечно, это могут быть совпадения, но очень уж странные и очень их много. Так что, скорее всего, они были в курсе идеальных пропорций.

Сохранившиеся постройки древности тоже подчинены правилу золотого сечения

Совершенно точно то, что Леонардо да Винчи искал подтверждение этому принципу в строении человеческого тела. И, что самое интересное, нашел. Те лица и тела, которые кажутся нам красивыми, имеют пропорции, которые как раз и подчиняются закону золотого сечения.

Формальное определение звучит и просто, и сложно. Его связывают с двумя разными по размеру отрезками. Звучит этот принцип примерно так: если отрезок разделить на две неравные части, то это деление будет пропорциональным, если большая часть отрезка относится к целому так же, как и меньшая часть к большему. Будет понятнее, если посмотреть на иллюстрацию и формулу.

Принцип и формула золотого сечения

На рисунке целый отрезок разделен так, что если а разделить на b, получим 1,1618, та же цифра получается, если целый отрезок разделить на большую часть — a. Это число и есть воплощением идеальной пропорции. Теперь, если посмотрите на картинку с Парфеноном, пропорции этого строения также подчиняются указанному соотношению.

Ту же закономерность можно представить в виде процентов. Может, кому-то так проще. Для того, чтобы деление целого было пропорциональным, части должны составлять 62% и 38%. Возможно, так будет проще запомнить.

Последовательность Фибоначчи — не только математическая формула

Эту закономерность развил дальше математик Фибоначчи. Он разработал числовую последовательность, элементы которой, начиная с девятого, подчиняются тому же закону. Графическое изображение этой последовательности — спираль. Если присмотреться, и в природе, и в архитектуре, и в человеческом теле пропорции красоты присутствуют.

Как построить прямоугольник с идеальными пропорциями

Чтобы применять на практике полученную информацию, надо каким-то образом научиться делить пространство или строить его согласно этому закону. Для начала давайте научимся строить прямоугольник с идеальными пропорциями. За основу берем квадрат.

Построение прямоугольника с золотым сечением

Квадрат делим пополам, в одном из полученных прямоугольников проводим линию, которая соединяет противоположные углы. Дальше берем циркуль, ставим иголку в центр нижней стороны квадрата, откладываем длину полученной диагонали и отмечаем ее на линии, которая будет продолжением нижней стороны квадрата. Полученный прямоугольник имеет соотношение сторон 1,62 (это как раз то соотношение, которое и дает 62% и 38%).

Это явно неспроста. Хотя далеко не все подчиняется этой закономерности

Что еще интересно, что если вы начнете делить прямоугольник с соотношением сторон 1,62 на квадрат и прямоугольник, вы получите снова прямоугольник с идеальными пропорциями, но меньшего размера. Если вы его снова разделите по тому же принципу, будет еще одна пара квадрат+прямоугольник со сторонами, соотношение которых будет соответствовать золотому сечению. И так до тех пор, пока вы сможете проводить деление. Но что еще интереснее, в это деление отлично вписывается ряд Фибоначчи, который имеет вид раскручивающейся спирали. Иллюстрация на рисунке выше.

Как разделить отрезок по правилу золотого сечения

Это умение пригодится, например, при создании проекта дома, планировки, при разработке дизайна квартиры, расстановке мебели и т.д. Точно также может понадобиться при планировке участка, клумб, высадке растений и т.д. В общем, применяться может практически везде.

Ничего особенного, но взгляд не оторвать. Знаете почему?

Итак, порядок деления отрезка по правилу золотого сечения:

  • Берем отрезок, делим его пополам.
  • Из одного из концов восстанавливаем перпендикуляр (прямая под углом 90°), который длиной равен половине отрезка. На рисунке это отрезок BC.
  • Полученную точку C соединяем прямой с другим концом отрезка (A).
  • На отрезке AC ставим точку D. Она находится на расстоянии, равном длине отрезка BС. Проще всего это сделать при помощи циркуля, но можно и линейкой.
  • Замеряем длину отрезка AD (снова циркулем, либо линейкой). Такую же длину откладываем на отрезке AB. Получаем точку E.
  • Теперь, если измерить длины отрезков AE и EB и разделить их, получим то самое заветное число — 1,62.

Деление отрезка на участки с идеальным соотношением

Пару раз повторив процедуру, вы научитесь делать все буквально за считанные минуты. Если же вам надо, например, определить высоту окна, его форму, также можно воспользоваться данными пропорциями. По тому же принципу можно определять местоположение всех архитектурных элементов, их размеры. При планировании уже имеющихся объектов, деление проще проводить при помощи процентного соотношения. Тут уже либо считаете в уме, либо используете калькулятор.

Идеальный треугольник и пентаграмма

Идеальным называют равнобедренный треугольник, основание которого относится к длине стороны как 1/3. То есть, снова-таки соблюдается золотое сечение. Начертить треугольник с идеальным соотношением сторон несложно. Удобнее циркулем, но можно обойтись и линейкой.

Золотой треугольник, правило его построения и применение в создании интерьера, например

Построение такое. На прямой от точки A трижды откладываем отрезок произвольной длины. Эту длину обозначим O. Получаем точку B. Через нее проводим прямую, перпендикулярную отрезку AB. На этой линии в обе стороны от точки B откладываем величину O. Получаем две точки d и d1. Соединяем их с точкой A. Вот и получили треугольник, стороны которого относятся как 1,62. Проверить это можно, если отложить при помощи циркуля длину основания на боковой стороне (точка C). Вторая проверка — противолежащий угол составляет 36°.

Построение пентаграммы несколько сложнее. Ее вписываем в круг, без циркуля не обойтись.

  • Центр окружности обозначаем O, через него проводим прямую до пересечения с окружностью. Одну из точек пересечения обозначаем A. Отрезок OA — диаметр окружности.
  • Находим середину отрезка OD, ставим точку E. Из центра окружности вверх до пересечения с окружностью восстанавливаем перпендикуляр. Это точка D.

Построение пентаграммы

  • Соединяем точки E и D. При помощи циркуля откладываем на радиусе точку C. Отрезок СD равен длине отрезка ED. Циркулем замеряем длину отрезка ED. Иглу ставим в точку E, ведем грифель до пересечения с радиусом. Вот и получили точку C.
  • Длинна отрезка DC — сторона пентаграммы. Замеряем ее, при помощи циркуля переносим на окружность. Для этого циркулем с отложенным расстоянием ставим еще четыре точки на окружности, поочередно соединив их, получаем пентаграмму.

Вот что интересно, если вершины полученной пентаграммы использовать для прорисовки звезды, она будет состоять из идеальных треугольников.

Применение в строительстве

Как уже говорили, неизвестно кто открыл золотое сечение, но все, что кажется нам красивым, имеет именно такое соотношение сторон. Примеров в природе очень много. Если рассматривать известные здания, то и там тоже есть та же закономерность.

Исаакиевский собор — можете посчитать ради интереса

Если вы хотите, чтобы ваш дом внутри и снаружи был привлекательным, запоминался и нравился, при создании или выборе проекта можно просчитать хотя бы основные пропорции. Внести корректировки в пропорции, возможно, не всегда легко, часто связано с дополнительными расходами. Но, если при создании проекта сразу держать в уме золотое сечение, вопросы сами по себе отпадают. На самом деле не так уж это сложно.

Например, вы хотите дом площадью около 100 квадратных метров. Длинную сторону можно принять за 12 метров. Тогда короткая находится как 62% от длинной и составит 7,44 метра. Можно сделать 7 метров или 7,5, можно увеличить до 8. Точное, до сантиметра соблюдение размеров совсем не обязательно. Важно соотношение. А «на глаз» даже в приближении смотрится гармонично. Площадь застройки в таком случае получается несколько меньше — 90-96 квадратов. Если вам надо больше — берите длинную сторону равной 13 метрам и снова считайте. Вроде как применять золотое сечение при создании плана дома понятно.

Если основные параметры строения имеют правильную пропорцию, в любом стиле здание смотрится интересно

Высота этажа в таком случае принимается как 32% от длинной части. Она составит 12*0,32 = 3,84 метра. В принципе, это соответствует нынешним представлениям о комфортных габаритах помещения, но при желании можно сделать высоту меньше. Примерно также рассчитываются, подбираются все остальные фрагменты дома.

Не стоит забывать, что дом должен вписываться также в ландшафт. Если есть какая-то доминанта — высокий холм, например, то просчитывать надо и соотношение с холмом, и с пропорциями участка. В общем, для создания гармоничной усадьбы очень многие факторы надо учитывать.

Не только прямые линии можно использовать. Правда с изогнутыми поверхностями работать сложнее, да и обходятся они дороже — нестандартное устройство всегда более затратное

По такому же принципу разрабатывают внутреннюю планировку, стараясь по возможности соблюдать требуемое соотношение. Но еще раз повторим: по возможности. Не зацикливайтесь на точном соответствии до сантиметра. Важна общая тенденция.

Золотое соотношение во внутреннем оформлении

Что еще дает золотое сечение кроме визуального наслаждения? Психологи говорят, что в интерьере, созданном по этому правилу человек чувствует себя более комфортно. Это, конечно, субъективно, но можно попробовать. Итак, вот как интерпретируют правило золотого сечения в дизайне интерьеров:

  • Если вы собираетесь разделить комнату на зоны, воспользуйтесь правилом. Это значит, что одна из частей должна быть около 62%, вторая — 38%.
  • Площадь, занятая предметами мебели, не должна быть больше чем 2/3.
  • При подборе мебели руководствуемся правилом: каждый средний предмет по габаритам относится к крупным так же, как маленький к средним.
  • При выборе цвета придерживайтесь примерно тех же правил:
    • Основной цвет составляет порядка 2/3, все дополнительные и акцентный — 1/3. Цвета выбирают сочетающиеся по определенным правилам.
    • Второй вариант: 60% — основной цвет, 30% дополнительные и 10% — это акцентные.

      Пример подбора цвета по правилам правильной пропорциональности

  • При использовании горизонтального деления стены (панели), высоту панели можно брать 1/3 или 2/3 от общей высоты комнаты. Но при этом мебель подбирается пропорциональной по высоте, а не по длине.

Относительно мебели правило кажется непонятным, но это только на первый взгляд. Например, подбираем группу отдыха. Крупный предмет в этом случае — диван или софа. Средний — журнальный или кофейный столик, кресла. Мелкие — аксессуары. Так вот, размеры журнального столика не должны быть больше длинной стороны дивана, кресла — не больше его короткой стороны. Аксессуары по размерам не больше размеров столика или кресел. В идеале, они соотносятся с ними как 62% и 38%.

Пропорциональность — важная вещь

Почему не указывается точное соотношение? Потому что, во-первых, найти такие предметы нереально. Во-вторых, золотое сечение — это не только 62% и 38%. Это еще и последовательность Фибоначчи, следование которой также делает оформление гармоничным. Есть люди, у которых следование этой последовательности является «встроенной функцией». Им не надо считать, они выбирают основываясь на чутье и интуиции. Но если проанализировать их выбор, пропорции будут близки к идеальным. Вот так.

Золотое сечение в ландшафтном дизайне

При создании ландшафта на участке, принцип идеальных пропорций применяют, называя его правилом треугольника. В композиции должна быть одна доминанта, остальные ее составляющие лишь подчеркивают, оттеняют ее. Например, на участке есть большое дерево и вы хотите его обыграть. Оно и будет центром композиции — доминантой. Нанесите его на план, расчертите клумбу или рокарий, альпинарий — то, что хотите сделать.

Правило треугольника в садовом дизайне

От главенствующего растения или камня, под прямым углом проведите две линии. На этих линиях надо будет высадить более низкие растения. Причем второе по высоте не должно быть выше чем 2/3 от высоты основного объекта. Третий объект — не выше чем 1/3. Дополняют композицию еще более низкорослыми насаждениями. Это коротко о том, как применять золотое сечение в планировке посадок.

Но это не все. Растения надо подбирать по цветам — сочетание зелени разных оттенков, вкрапления цветов и декоративно-лиственных растений — все подчиняется тому же закону. Доминирующий оттенок составляет порядка 60%, дополнительные цвета — 30%, акценты — 10 %. Это если говорить о правилах подбора в одной группе. Но также надо согласовывать и весь план целиком — по размерам, высоте, цветам.

15 примеров золотого сечения в архитектуре

Примеры золотого сечения в архитектуре найти можно везде, когда умеешь его видеть. Выяснить это даже школьнику по силам. В 2013 году ученица 10 класса Сивакова Елена провела собственное исследование зданий 19-20 веков. Проследим, как она это сделала, и научимся видеть и определять его в архитектурных сооружениях за 5 минут. После прочтения статьи не останется вопросов о том, что это такое, и можно ли его необычные свойства использовать в своей жизни.

7+ примеров золотого сечения в архитектуре России

Санкт-Петербург

Здания исторического центра Санкт-Петербурга построены в разных архитектурных стилях, таких как барокко, классицизм, ампир, эклектика, необарокко, неоготика. Подчиняются ли они золотому правилу?

Исаакиевский собор

Придворный архитектор Александра I Огюст Монферран строил этот собор с 1819 по 1858 гг. Стиль позднего классицизма, в котором уже проявлены черты неоренессанса и эклектики. Елена задалась вопросом: «В чём же причина гармонии довольно громоздкого здания?»

Свой поиск она начала, как рекомендуется в методике профессора Московского архитектурного института Ю.Н.Герасимова, с фасада собора. На чертеже просматриваются три ряда Золотого сечения.

Первый ряд определён шириной здания, которая принята за 400 ед. и представляет такие цифры 400, 247, 153, 94, 58…

Если 400 разделим на число ≈1,618, то получим приблизительно 247; повторяем действие со следующим числом: 247: 1.618≈153.

И так находим все числа. Теперь смотрим на рисунок. Основная часть с колоннами вписывается в прямоугольник со сторонами 400 и 247. Поскольку стороны находятся в соотношении Ф≈1.618, то они образуют Золотой прямоугольник.

Следующий ряд представлен высотой здания: 370, 228, 140, 87, 53, 33, 20, 12. Эти размеры заложены в более мелкие детали. По вертикали Исаакиевский собор делится Золотым сечением у основания купола, что делает соотношение основной части и купола гармоничным.

Третий ряд размеров начинается со 113, и являет ширину основания главного купола: 113, 69, 42, 26, 16. Числа этого ряда встречаются в размерах окон, в высотах колонн и других деталей собора.

Золотые прямоугольный и равнобедренный треугольники имеют место в здании Исаакиевского собора, как видно из рисунка.

Кунсткамера

На Университетской набережной Васильевского острова стоит здание Кунсткамеры, заложенное в 1718 году под руководством немецкого архитектора Георга Маттарнови: Петровское барокко, два 3-этажных корпуса и сложная многоярусная купольная башня.

Исследование начинается с главных величин: высоты и длины здания, от которых строится золотой ряд. Длина — 450 ед., далее 277, 170, 105, 65, 40, 24. Такие размеры можно видеть в высоте и широте разных уровней башни, длине корпусов. Сама башенная часть вписана в золотой равнобедренный треугольник от основания до вершины. Золотое сечение просматривается в большей степени именно в этом главном элементе, что правильно с точки зрения архитектуры. Вывод: основа Кунсткамеры подчиняется золотому правилу и сохраняет композиционную гармоничность.

Новый золотой ряд начинает высота здания: 211, 130, 80, 49, 30. Глядя на размеры чертежа, становиться понятно, что выбор трёхэтажного вида корпусов обусловлен соразмерностью с башней.

Торговый дом «Эсдерс и Схейфальс» на пересечении Мойки и Гороховой

Построено в 1907 году по проекту Владимира Александровича Липского и Константина Николаевича де Рошефора (Рошфора). В 1905 г. бельгиец С. Эсдерс и нидерландец Н. Схейфальс подали прошение о разрешении построить пятиэтажное здание с куполом и шпилем на угловой башне для их торгового дома вместо старого.

С длины здания в 671 ед. начинается ряд Золотого сечения, наблюдаемого в размерах: 671, 414, 256, 158, 98, 60, 37, 23. Обращаем внимание на основной элемент — шпиль. Убеждаемся, что композиционное решение завершено гармоничным сочетанием высотных величин.

Дом Советов на Московской площади

Построен в 1941г по проекту Ноя Абрамовича Троцкого. Здание советского периода рассматривают как творческую интерпретацию классики. Центральный портик с четырнадцатью колоннами завершает скульптурный ансамбль на тему строительства социализма и гербом Российской Советской Федеративной Социалистической Республики.

По бокам симметрично расположены пятиэтажные корпуса. Длина Дома достигает 1472 ед., из которого методом деления на число Ф получается ряд размеров элементов здания: 1472, 909, 562, 34, 214, 132, 81, 50 (Приложение 21): высоты сооружения, высоты входа и др.

Вершина Золотого равнобедренного треугольника совпадает с вершиной здания, а его стороны проходят через вехние точки главного входа. Прямоугольный золотой треугольник образован вершинами в верхушке здания и в конце внутренней части бокового крыла. Пропорциональность очевидна, хотя и не имеет большой композиционной значимости.

Москва

Московский Государственный Университет на Воробьёвых горах

Над его проектом работал коллектив под управлением Б.М.Иофана, которого позже сместили с должности главного архитектора. Образец послевоенной советской архитектуры выстроен с 1949 по 1953 годы.

Б.М.Иофан предложил композицию из пяти составляющих с центральной башней. В годы строительства это было самое высокое здание в Европе.

Длина здания равна 1472 ед. и начинает ряд: 909, 562, 347, 214, 132, 81, 50. Золотому сечению подчиняются, в основном высотные размеры. Из ширины башни проистекает другой ряд: 538, 332, 205, 126, который видим в широтных размерах.

Золотой прямоугольный треугольник гипотенузой проходит через угол здания и захватывает пристройки.

Таким образом, во всех исследуемых зданиях ученица обнаружила Золотое сечение, сохраняющее гармонию.

5 примеров дополнительно

Применяя этот способ, находим золотую пропорцию русского зодчего Матвея Казакова в кремлёвском здании сената, да и во всех остальных работах: Пречистенском дворце в Москве, Благородном собрании, Голицынской больнице (им. Пирогова)…

Созданный другим великим архитектором Василием Ивановичем Баженовым дом Пашкова в Москве (Российская государственная библиотека) причисляют к образцам совершенных архитектурных памятников, в котором легко определить ЗС.

Ужасный символ Парижа и золотое сечение

Когда в Париже собирали металлическую Эйфелеву башню, многие французы возмущались. Критики писали о ней, как об «уродстве города», «сраме Парижа», «тощей пирамиде из металлических лестниц». В их числе были Эмиль Золя, Дюма-младший, Ги де Мопассан. Сейчас этот самый посещаемый памятник является гордостью парижан. Может быть виной тому «божественная» пропорция?

Она же наблюдается и самом знаменитом французском соборе Нотр-Дам-Де-Пари.

Вся правда о древних строителях

Интуитивно или сознательно великие архитекторы строили здания с учётом этих пропорций? Античные математики знали о золотом сечении со времён Пифагора. Находятся всё новые подтверждения его применения в архитектурных пропорциях. Однако не найти ни одной древней записи с прямой рекомендацией использовать “божественную пропорцию”. Нет таковой и у Витрувия (I век до н. э.), написавшего «Десять книг об архитектуре», в которых он рассматривал пропорциональности в том числе. Странный факт, не правда ли?

Может все выше приведённые исследования являются подгонкой под известный результат? Не так сложно выбрать из множества архитектурных элементов те, которые подтверждают гипотезу, т. к. абсолютной точности никто не требует. Логично задуматься над вопросом: «Что если греки НЕ применяли золотое сечение?»

Собственно говоря, и для Луки Пачоли, написавшего в 1509 году труд «Божественная пропорция», не столь важно было его прикладное значение. Важно было обосновать её мистическую природу. А применять его осознанно стали только с момента издания книги.

Тайна архитектуры Древней Греции

Красивые и гармоничные объекты всегда отвечают правилу ЗС, а при анализе величин определяется эта пропорциональность. Искусствоведы внимательно изучили греческий Парфенон, возведённый в честь победы над персами — храм богини Афины. Отношение длины храма к ширине даёт золотое число с маленькой погрешностью. Если отнять от длины сооружения 14 см и прибавить к ширине, то получится полное совпадение с математической величиной. Фасад здания немного сужается кверху, отклоняется от прямоугольной формы. Учитывая визуальное восприятие, сделано это строителями сознательно. Поэтому считать его прямоугольником золотого сечения не совсем корректно. Но пропорции соблюдаются, так что логично предположить, что архитекторы Иктин и Калликрат умышленно заложили правило в проект?

Мифы и диковинные факты о пирамиде

Пирамида Хеопса также выстроена с учётом этого условия. Не вдаваясь в математическое доказательство наличия золотой формулы, скажем только, что в нём присутствуют прямоугольный золотой треугольник, сторонами которого являются высота и половина стороны основания строения. Ничего удивительного?

Но тогда возникает вопрос об уровне древнеегипетской математики. Выходит, что теорема Пифагора была им известна за два тысячелетия до рождения самого учёного. Внимание привлекает факт, что наследники Хеопса строили свои пирамиды уже с другими пропорциями. Почему?

Установлено, что сооружения пирамидальной формы с ЗС оказывают на находящихся в них феноменальное воздействие: растения лучше растут, металлы становятся прочнее, вода долго остаётся свежей. Учёные много лет работают с этими загадками, но тайна остаётся.

Замечено, что пирамида приводит структуру пространства в слаженное состояние. Всё, что попадает в зону действия, тоже организуется подобным образом: психоэмоциональное состояние людей улучшается, вредные для человека излучения уменьшаются, исчезают геопатогенные зоны. Интернет утверждает, что если размер фигуры увеличивается в два раза, то влияние пирамиды усиливается в сто раз.

Как же всё-таки построить «Золотой» дом для себя?

Правильное распределение энергий внутри дома, гармоничные конструкции в сочетании с экологией и безопасностью строительных материалов побуждают современных архитекторов и дизайнеров использовать принципы и понятия Золотого сечения. Это увеличивает смету и создаёт впечатление глубокой проработки проекта. Стоимость возрастает на 60-80%.

Для талантливых художников и архитекторов правило сохраняется интуитивно во время творческого процесса. Однако некоторые из них сознательно реализуют это положение.

В природе подобная соразмерность встречается везде. Тот, кто чувствует гармонию пространства, создаст пропорциональное здание без специальных для этого усилий.

Например, наши предки строили хоромы соразмерные человеку. Мерили высоту и длину в саженях, локтях, аршинах, пядях. Никто не возражает, что в человеческом теле соблюдена золотая пропорция? Длина руки от кончиков пальцев до подмышки относится к расстоянию от той же точки до локтя как эта величина к размеру ладони.

Известный французский архитектор Ле Корбюзье для расчёта параметров будущего дома и интерьера использовал в качестве отправной единицы рост хозяина. Все его работы по-настоящему индивидуальны и гармоничны.

5 способов соблюдать правило в интерьере

  1. В доме, построенном без учёта соотношения, можно сделать перепланировку комнат, чтобы пропорции соответствовали.
  2. Иногда достаточно переставить мебель или сделать дополнительную перегородку.
  3. Аналогичным образом меняется высота и длина окон и дверей.
  4. В цветовом оформлении получение упрощённого соотношения достигается за счёт 60% основного цвета, 30% — оттеняющего, и остальных 10% — усиливающих восприятие тонов.
  5. Высота и длина мебели должна соизмеряться высотой потолков и шириной простенков.

Приложение этой нормы в интерьере, как архитектурно оформленном пространстве, объединяют с понятиями самоорганизации, рекурсии, асимметрии, красоты.

О золотом сечении простыми словами

Что же это такое? Отрезки золотой пропорции выражаются бесконечной иррациональной дробью, десятичное значение которой равно приближённо числу Ф≈1,618 или Ф≈1,62. Другими словами: если берём целое и делим его на две части так, что одна из них составляет 62%, а другая — 38%, получаем Золотую пропорцию.

Золотой прямоугольник: когда длину большей стороны делим на длину меньшей и получаем число Ф. При делении меньшей на большую получается обратное значение φ ≈ 0,618.

Золотой равнобедренный треугольник: если отношение размера одной боковой стороны и размера основания составляет золотое число Ф; угол между равными сторонами равен 36°.

Золотой прямоугольный треугольник Кеплера объединяет в себе теорему Пифагора и ЗС: соотношение квадратов его сторон составляет 1,618.

Оцените полезность статьи, поделитесь с друзьями и добавьте в закладки, чтобы было легко найти.

Смотрите познавательное видео по теме

Золотое сечение в архитектуре

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *