Общий знаменатель как найти

Так для чего нужен общий знаменатель, или когда нужен общий знаменатель?
Ответ довольно прост, мы имеем право дроби складывать и вычитать только когда у данных дробей есть общий знаменатель. Поэтому важно понять, как находить общий знаменатель.

Определение:
Общий знаменатель – это число всегда положительное на которое делятся знаменатели данных дробей.

Формула основного свойства рациональных чисел.

Основное свойство рациональных чисел гласит:

\(\frac{p}{q}=\frac{p \times n}{q \times n}\)

Такое решение называется приведением к общему знаменателю. Мы имеем право умножать одновременно на одно и тоже число и числитель и знаменатель.

Рассмотрим пример:

\(\frac{1}{2}=\frac{1 \times 4}{2 \times 4}=\frac{4}{8}\)

Получаем,

\(\frac{1}{2}=\frac{4}{8}\)

Наименьший общий знаменатель.

Что такое наименьший общий знаменатель?

Определение:
Наименьший общий знаменатель – это наименьшее положительное число кратное знаменателям данных дробей.

Как привести к наименьшему общему знаменателю? Чтобы ответить на этот вопрос рассмотрим пример:

Приведите дроби с разными знаменателями к наименьшему общему знаменателю .

Решение:
Чтобы найти наименьший общий знаменатель нужно найти наименьшее общее кратное (НОК) знаменателей этих дробей.

У первой дроби знаменатель равен 20 разложим его на простые множители.
20=2⋅5⋅2

Так же разложим и второй знаменатель дроби 14 на простые множители.
14=7⋅2

НОК(14,20)= 2⋅5⋅2⋅7=140

Ответ: наименьший общий знаменатель будет равен 140.

Как привести дробь к общему знаменателю?

Нужно первую дробь \(\frac{1}{20}\) домножить на 7, чтобы получить знаменатель 140.

\(\frac{1}{20}=\frac{1 \times 7}{20 \times 7}=\frac{7}{140}\)
А вторую дробь умножить на 10.

\(\frac{3}{14}=\frac{3 \times 10}{14 \times 10}=\frac{30}{140}\)

Правила или алгоритм приведения дробей к общему знаменателю.

Алгоритм приведения дробей к наименьшему общему знаменателю:

  1. Нужно разложить на простые множители знаменатели дробей.
  2. Нужно найти наименьшее общее кратное (НОК) для знаменателей данных дробей.
  3. Привести дроби к общему знаменателю, то есть умножить и числитель и знаменатель дроби на множитель.

Общий знаменатель для нескольких дробей.

Как найти общий знаменатель для нескольких дробей?

Рассмотрим пример:
Найдите наименьший общий знаменатель для дробей \(\frac{2}{11}, \frac{1}{15}, \frac{3}{22}\)

Решение:
Разложим знаменатели 11, 15 и 22 на простые множители.

Число 11 оно само по себе уже простое число, поэтому его расписывать не нужно.
Разложим число 15=5⋅3
Разложим число 22=11⋅2

Найдем наименьшее общее кратное (НОК) знаменателей 11, 15, и 22.
НОК(11, 15, 22)=11⋅2⋅5⋅3=330

Мы нашли наименьший общий знаменатель для данных дробей. Теперь приведем данные дроби \(\frac{2}{11}, \frac{1}{15}, \frac{3}{22}\) к общему знаменатели равному 330.

\(\begin{align}
\frac{2}{11}=\frac{2 \times 30}{11 \times 30}=\frac{60}{330} \\\\
\frac{1}{15}=\frac{1 \times 22}{15 \times 22}=\frac{22}{330} \\\\
\frac{3}{22}=\frac{3 \times 15}{22 \times 15}=\frac{60}{330} \\\\
\end{align}\)

Вопросы по теме:
Какой общий знаменатель у дробей \(\bf \frac{2}{25}\) и \(\bf \frac{1}{14}\)?
Ответ:
Какой наименьший общий знаменатель у дробей 14 и 25? Воспользуемся алгоритмом приведения дробей к общему знаменателю алгебраических дробей.

Сначала разложим на простые множители знаменатели 14 и 25.
14=2⋅7
25=5⋅5
Теперь найдем НОК(14,25)=2⋅7⋅5⋅5=350.

Это мы нашли наименьший общий знаменатель:

>Как найти наименьший общий знаменатель

Для решения примеров с дробями необходимо уметь находить наименьший общий знаменатель. Ниже приведена подробная инструкция.

1 Как найти наименьший общий знаменатель – понятие

Наименьший общий знаменатель (НОЗ) простыми словами – это минимальное число, которое делится на знаменатели всех дробей данного примера. Другими словами его называют Наименьшим Общим Кратным (НОК). НОЗ используют только в том случае, если знаменатели у дробей различны.

2 Как найти наименьший общий знаменатель – примеры

Рассмотрим примеры нахождения НОЗ.

Пример 1:

Вычислить: 3/5 + 2/15.

Решение (Последовательность действий):

  • Смотрим на знаменатели дробей, убеждаемся, что они разные и выражения максимально сокращены.
  • Находим наименьшее число, которое делится и на 5, и на 15. Таким числом будет 15. Таким образом, 3/5 + 2/15 = ?/15.
  • Со знаменателем разобрались. Что будет в числителе? Помочь выяснить это нам поможет дополнительный множитель. Дополнительный множитель – это число, получившееся при делении НОЗ на знаменатель конкретной дроби. Для 3/5 дополнительный множитель равен 3, так как 15/5 = 3. Для второй дроби дополнительным множителем будет 1, так как 15/15 = 1.
  • Выяснив дополнительный множитель, умножаем его на числители дробей и складываем получившиеся значения. 3/5 + 2/15 = (3*3+2*1)/15 = (9+2)/15 = 11/15.

Ответ: 3/5 + 2/15 = 11/15.

Пример 2.

Если в примере складываются или вычитаются не 2, а 3 или больше дробей, то НОЗ нужно искать уже для стольких дробей, сколько дано.

Вычислить: 1/2 – 5/12 + 3/6

Решение (последовательность действий):

  • Находим наименьший общий знаменатель. Минимальным числом, делящимся на 2, 12 и 6 будет 12.
  • Получим: 1/2 – 5/12 + 3/6 = ?/12.
  • Ищем дополнительные множители. Для 1/2 – 6; для 5/12 – 1; для 3/6 – 2.
  • Умножаем на числители и приписываем соответствующие знаки: 1/2 – 5/12 + 3/6 = (1*6 – 5*1 + 2*3)/12 = 7/12.

>Приведение дробей к общему знаменателю (Москаленко М.В)

Тема: Сложение и вычитание дробей с разными знаменателями

Урок: Приведение дробей к общему знаменателю

1. Что значит привести дробь к новому знаменателю? Что такое дополнительный множитель? Какое число может быть новым знаменателем данной дроби?

Повторение. Основное свойство дроби.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Например, числитель и знаменатель дроби можно разделить на 2. Получим дробь . Эту операцию называют сокращением дроби. Можно выполнить и обратное преобразование, умножив числитель и знаменатель дроби на 2. В этом случае говорят, что мы привели дробь к новому знаменателю. Число 2 называют дополнительным множителем.

Вывод. Дробь можно привести к любому знаменателю кратному знаменателю данной дроби. Для того чтобы привести дробь к новому знаменателю, ее числитель и знаменатель умножают на дополнительный множитель.

2. Привести дробь к новому знаменателю. (Упражнения)

1. Приведите дробь к знаменателю 35.

Число 35 кратно 7, то есть 35 делится на 7 без остатка. Значит, это преобразование возможно. Найдем дополнительный множитель. Для этого разделим 35 на 7. Получим 5. Умножим на 5 числитель и знаменатель исходной дроби.

2. Приведите дробь к знаменателю 18.

Найдем дополнительный множитель. Для этого разделим новый знаменатель на исходный. Получим 3. Умножим на 3 числитель и знаменатель данной дроби.

3. Приведите дробь к знаменателю 60.

Разделив 60 на 15, получим дополнительный множитель. Он равен 4. Умножим числитель и знаменатель на 4.

4. Приведите дробь к знаменателю 24

В несложных случаях приведение к новому знаменателю выполняют в уме. Принято только указывать дополнительный множитель за скобочкой чуть правее и выше исходной дроби.

3. Что значит привести дроби к общему знаменателю?

Дробь можно привести к знаменателю 15 и дробь можно привести к знаменателю 15. У дробей и общий знаменатель 15.

Общим знаменателем дробей может быть любое общее кратное их знаменателей. Для простоты дроби приводят к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей данных дробей.

4. Как привести дроби к наименьшему общему знаменателю? Иллюстрирующий пример и алгоритм.

Пример. Привести к наименьшему общему знаменателю дроби и .

Сначала найдем наименьшее общее кратное знаменателей данных дробей. Это число 12. Найдем дополнительный множитель для первой и для второй дроби. Для этого 12 разделим на 4 и на 6. Три – это дополнительный множитель для первой дроби, а два – для второй. Приведем дроби к знаменателю 12.

Мы привели дроби и к общему знаменателю, то есть мы нашли равные им дроби, у которых один и тот же знаменатель.

Правило. Чтобы привести дроби к наименьшему общему знаменателю, надо

Во-первых, найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем;

Во-вторых, разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель.

В-третьих, умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

5. Привести дроби к наименьшему общему знаменателю. (Упражнения)

а) Привести к общему знаменателю дроби и .

Наименьший общий знаменатель равен 12. Дополнительный множитель для первой дроби – 4, для второй – 3. Приводим дроби к знаменателю 24.

б) Привести к общему знаменателю дроби и .

Наименьший общий знаменатель равен 45. Разделив 45 на 9 на 15, получим, соответственно, 5 и 3. Приводим дроби к знаменателю 45.

в) Привести к общему знаменателю дроби и .

Общий знаменатель – 24. Дополнительные множители, соответственно, – 2 и 3.

6. Пример. Как найти общий знаменатель, используя разложение на простые множители знаменателей исходных дробей

Иногда бывает трудно подобрать устно наименьшее общее кратное для знаменателей данных дробей. Тогда общий знаменатель и дополнительные множители находят с помощью разложения на простые множители.

Привести к общему знаменателю дроби и .

Разложим числа 60 и 168 на простые множители. Выпишем разложение числа 60 и добавим недостающие множители 2 и 7 из второго разложения. Умножим 60 на 14 и получим общий знаменатель 840. Дополнительный множитель для первой дроби – это 14. Дополнительный множитель для второй дроби — 5. Приведем дроби к общему знаменателю 840.

7. Заключение

Список литературы

1. Виленкин Н.Я., Жохов В.И., Чесноков А.С. и др. Математика 6. – М.: Мнемозина, 2012.

2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. – Гимназия, 2006.

3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. – Просвещение, 1989.

4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. – ЗШ МИФИ, 2011.

5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. – ЗШ МИФИ, 2011.

6. Шеврин Л.Н., Гейн А.Г., Коряков И.О. и др. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. – Просвещение, 1989.

Общий знаменатель как найти

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *