Как установить кулер на вдув

Компьютер включает в себя огромное число различных элементов, которые обеспечивают бесперебойную работу устройства. Вентиляторы – это одни из таких обязательных компонентов. Данные компоненты отвечают за охлаждение других элементов с помощью воздуха. Со временем компьютер начинает перегреваться, требуется замена существующего вентилятора. Установление нового элемента понизит температуру, а его работа станет гораздо тише.

Как определить работу вентилятора: на вдув или выдув?

Определение типа вентилятора

У многих возникает вопрос по поводу того, как определить работу вентилятора на вдув или выдув? Сделать это достаточно просто, в этом поможет направление лопастей. Если аппарат на выдув, то лопасти загребаются по направлению вниз. Движение происходит против часовой стрелки. Корпусы сегодняшних охладительных компьютерных элементов имеют стрелки, которые изображают вращательное направление и направление воздушного потока. Любой агрегат обладает двумя стрелками. Одной стрелкой указывается, куда направляются лопасти, другой стрелкой изображается направление потока.

Особенности

Направленность наглядно

Данные компьютерные компоненты не только подают воздух для охлаждения остальных элементов устройства, что является не самым действенным методом охлаждения. Целью данных аппаратов должно быть создание воздуха во внутренней части корпуса. То есть холодный воздух должен затягиваться, а горячий – выбрасываться.

Как мы узнали раньше, агрегаты для охлаждения обладают одним направлением воздуха. Это направление обозначается стрелкой. Местоположение стрелки — корпус аппарата. Если стрелка отсутствует, то поможет наклейка, которая находится на моторе. Обычно воздушный поток имеет направление в сторону наклейки.

Для установления лучше использовать больше аппаратов, которые производят выдув. Это нужно для создания, так называемого вакуума во внутренней корпусной части. Холодный поток сможет поступать в корпус с абсолютного любого отверстия.

Установка

Установка

Вентиляторы на вдув или выдув, как ставить? Рассмотрим подробный алгоритм действий:

  1. Начнем с задней панели. Кулер блока питания, находящийся у задней панели, функционирует на выдув воздуха. Проведите установление одного или двух компонентов. Компоненты должны выдувать поток.
  2. Перейдем к передней панели. Необходимо произвести установку компонента, выполняющего вдув. Также можно провести установку второго кулера в отсеке, который предназначается для хард-диска (накопителя).
  3. Следующая часть – это боковая панель. Здесь понадобится аппарата, который производит выдув. Достаточно всего лишь одного бокового компонента.
  4. Последняя часть – это верхняя панель. Установите кулер, который выполняет вдув. Не устанавливайте устройство, которое производит выдув, потому что горячий воздушный поток направляется вверх, что приведет к избыточности кулеров, которые функционируют на выдув. Будет также не хватать аппаратов, выполняющих вдув.

Перейдем к непосредственному установлению. Чтобы выполнить данную процедуру, необходимо воспользоваться четырьмя винтами. Надо произвести прочную фиксацию аппарата, чтобы он не издавал шума. Помните о следующем:

  • Надо убедиться, что кабели не смогут попасть в лопасти. Кабели следует оттянуть. Сделать это можно при помощи кабельных стяжек.
  • Если зафиксировать кулер винтами проблематично, то нужно воспользоваться скотчем для того, чтобы приклеить его к отверстию вентиляции. После этого проводится фиксация при помощи винтов. Обязательно устраните скотч по окончанию данной процедуры.

Далее производится подключение.

Способ подключения к разъемам на материнской плате через специальный кабель

Подключение двух аппаратов проводится к разъемам, располагающихся на материнской плате. Другие компоненты подключаются к блоку питания. Работу подключенных к блоку питания вентиляторов контролировать у вас не получится. Невозможно будет проводить контроль скорости вращения. Они в данном случае будут выполнять работу с максимальной скоростью.

Потом необходимо закрыть корпус. Во внутренней части корпуса будет циркулировать охлажденный воздушный поток. Открытый корпус не даст такой возможности. Эффективность охлаждения компьютерных устройств будет значительно ниже.

Обязательно проводите контроль температуры элементов компьютера. Установка либо замена кулеров дает возможность охлаждать компьютерные элементы. Для данной процедуры установите программу мониторинга температуры устройств. В интернете их достаточное количество. Если нагревание компьютера все же происходит, то необходимо выполнить изменение расположения кулеров либо сделать установку новой системы охлаждения.

В данной статье можно было узнать, как определить типы устройств, предназначенных для охлаждения внутренних компонентов компьютера. Рассмотрели их установку и подключение.

Как правильно организовать охлаждение в игровом компьютере

Эта статья является продолжением серии ознакомительных материалов по сборке системных блоков. Если помните, в прошлом году вышла пошаговая инструкция «Как собрать компьютер», в которой подробно описаны все основные моменты по созданию и проверке ПК. Однако, как это часто бывает, при сборке системного блока важную роль играют нюансы. В частности, правильная установка вентиляторов в корпусе увеличит эффективность работы всех систем охлаждения, а также уменьшит нагрев основных компонентов компьютера. Именно этот вопрос и рассмотрен в статье далее.

Предупреждаю сразу, что эксперимент проводился на базе одной типовой сборки с использованием материнской платы ATX и корпуса форм-фактора Midi-Tower. Представленный в статье вариант считается наиболее распространенным, хотя все мы прекрасно знаем, что компьютеры бывают разными, а потому системы с одинаковым уровнем быстродействия могут быть собраны десятками (если не сотнями) различных способов. Именно поэтому приведенные результаты актуальны исключительно для рассмотренной конфигурации. Судите сами: компьютерные корпусы даже в рамках одного форм-фактора имеют разные объем и количество посадочных мест под установку вентиляторов, а видеокарты даже с использованием одного и того же GPU собраны на печатных платах разной длины и оснащены кулерами с разным числом теплотрубок и вентиляторов. И все же определенные выводы наш небольшой эксперимент сделать вполне позволит.

⇡Современный системный блок

В интернете можно найти большое количество статей про организацию охлаждения в системном блоке, но многие из них написаны в те далекие времена, когда стандартными (типовыми, классическими и так далее) считались компьютеры с верхним расположением блока питания и большим количеством корзин для 3,5- и 5,25-дюймовых устройств. Что ж, за последнее время стандарты заметно изменились. Данный факт наглядно показан в статье «Компьютер, который вы могли собрать, но пожалели денег, — лучшие корпуса, БП и охлаждение 2017 года». Тенденции, если я ничего не путаю, по преображению стандартных Tower-корпусов начали прослеживаться еще в 2014 году, но только теперь они стали массовым явлением.

Пример сборки в корпусе Thermaltake Versa N27

Так, компьютерный корпус с посадочным местом под установку блока питания в верхней части в 2018 году можно смело называть диковинкой. Обычно такие устройства расположены в ценовом диапазоне до 2 000 рублей. В большинстве остальных Tower-корпусов PSU крепится снизу, к тому же в последнее время его вовсе прячут за декоративной заслонкой. Туда же, под импровизированную шторку, иногда помещают корзину для жестких дисков. Например, в последних пяти обзорах на момент написания статьи на нашем сайте были рассмотрены именно такие модели.

На мой взгляд, в первую очередь производители корпусов поступают таким образом исходя из эстетических соображений, потому что применение забрала, скрывающего блок питания, неиспользуемые провода и HDD, при наличии окошка на боковой стенке делает систему заметно симпатичнее. К тому же в ПК с таким корпусом можно смело устанавливать немодульный блок питания, так как незадействованные кабели никак не скажутся на внешнем виде. А еще шторка четко отделяет блок питания от остальных комплектующих, что, в свою очередь, хорошо сказывается на его охлаждении. Как видите, мы наблюдаем сплошные плюсы.

Пример сборки в корпусе Thermaltake Core X31

Размеры Tower-корпусов за последнее время изменились несильно, однако, несомненно, внутренняя «перестройка» была спровоцирована в том числе и сменой приоритетов пользователей. Люди практически не пользуются оптическими приводами, а потому необходимости в 5,25-дюймовых отсеках в корпусе нет. В системные блоки все чаще устанавливают компактные твердотельные накопители — SSD форм-фактора M.2 вовсе не нуждаются в каких-либо корзинах. С учетом большой популярности онлайн-сервисов и облачных хранилищ нет необходимости устанавливать в ПК большое количество жестких дисков, поэтому один-два винчестера вполне можно закрепить на заградительной стенке корпуса. Наконец, все больше производителей железа выпускают яркие, эффектные комплектующие с подсветкой. Такая тенденция может не нравиться, она может бесить и раздражать, однако все больше производителей корпусов выпускают все больше оригинальных красочных моделей с окошком на боковой стенке.

Все перечисленные выше конструктивные особенности новой «классики» позволили, во-первых, аккуратно укладывать провода и шлейфы, что способствует лучшей циркуляции воздуха внутри корпуса и меньшему накоплению пыли. Во-вторых, отсутствие корзин для 3,5- и 5,25-дюймовых устройств увеличивает свободное пространство внутри корпуса. По этой же причине мы можем установить большее число вентиляторов, которые будут работать эффективнее. Собственно говоря, именно это и наблюдается в современных устройствах, так как даже в корпусах форм-фактора mini-Tower, поддерживающих установку только mini-ITX-материнских плат, можно закрепить на передней панели минимум два 120-мм вентилятора. Корпуса midi-Tower и full-Tower позволяют инсталлировать три, иногда четыре вентилятора на передней панели и столько же — на верхней стенке.

Примитивная иллюстрация перемещения воздушных потоков в современном Tower-корпусе

На фотографии выше показана сборка в midi-Tower-корпусе Thermaltake Core X31. Это устройство позволяет установить три вентилятора (как 120-мм, так и 140-мм) спереди, три вентилятора сверху, один снизу и один сзади. Следовательно, сборщик может полностью управлять воздушными потоками, наблюдаемыми в системном блоке. С учетом традиционной установки комплектующих и стандартного расположения самого корпуса (на столе рядом с монитором и пользователем; под столом) принято, что вентиляторы, установленные на передней и нижней панелях, засасывают воздух, а «карлсоны», закрепленные на верхней и задней стенках, выдувают его. Иллюстрация, приведенная выше, является примитивной, потому что, на самом деле, вариантов забора и выдува воздуха в корпусах может быть масса. Так, потоки «пробираются» сквозь отверстия в заглушках PCI Express, через прокладки на заградительной стенке, а также через крошечные щели в стыках сопряженных панелей.

Нагрев комплектующих в корпусе при отсутствии вентиляторов

Для большей наглядности приведу несколько снимков, сделанных промышленным тепловизором. Отчетливо видно, что при отсутствии корпусных вентиляторов нагретый воздух занимает большую часть внутреннего объема корпуса. В системе применяется процессорный кулер башенного типа, поэтому какой-никакой выдуввсе же присутствует. Огромную роль здесь играет общий объем Thermaltake Core X31, так как в более компактном корпусе температуры оказались бы заметно выше — это очевидный факт.

При установке одного вентилятора, работающего на вдув, на переднюю панель и одного вентилятора, работающего на выдув, на заднюю системам охлаждения процессора и видеокарты становится заметно легче выполнять свои непосредственные обязанности. Так, подсистема питания графического ускорителя теперь холоднее на 10 градусов Цельсия. Остальным компонентам блока тоже стало заметно комфортнее.

Нагрев комплектующих в корпусе при работе всех вентиляторов

Одного этого примера уже достаточно для констатации очевидной вещи: любая игровая система в Tower-корпусе должна оснащаться вентиляторами. Осталось только определить верное их количество, а также разобраться с правильным расположением этих элементов ПК. Чем мы и займемся далее.

⇡История одного игрового ПК

Напомню, все эксперименты проводились с типовым игровым системным блоком, собранным в корпусе форм-фактора Midi-Tower. Использование других устройств может повлиять – и, уверен, повлияет – на итоговые результаты. В некоторых случаях — незначительно, в других — кардинально. По мере повествования я постараюсь осветить те или иные моменты, основываясь в том числе и на собственном опыте.

Для проведения этого эксперимента я обратился за помощью к компаниям MSI и Thermaltake, которые любезно предоставили часть комплектующих на тест. Система получилась следующей:

  • Центральный процессор Intel Core i7-8700K, 6 ядер и 12 потоков, 3,7 (4,7) ГГц.
  • Процессорное охлаждение Thermaltake Frio Silent 12.
  • Оперативная память Corsair CMK16GX4M2A2666C16, 16 Гбайт, DDR4-2666.
  • Материнская плата MSI Z370 GAMING M5.
  • Накопители Western Digital WD10EFRX, Western Digital WDS100T1B0A и Team Group T-FORCE CARDEA.
  • Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, 11 Гбайт GDDR5X.
  • Корпус Thermaltake Core X31.
  • Корпусные вентиляторы Thermaltake Riing Plus 12 RGB Radiator Fan TT Premium Edition, два комплекта по три штуки.
  • Блок питания Thermaltake Smart Pro RGB 750W Bronze, 750 Вт.

По факту мы имеем дело с одним из вариантов сборки, которую я называю максимальной. Она, а также другие системы рассматриваются в рубрике «Компьютер месяца».

Intel Core i7-8700K

Важной «деталью» системного блока стал центральный процессор Core i7-8700K. Подробный обзор этого шестиядерника находится , поэтому не буду лишний раз повторяться. Отмечу только, что охлаждение флагмана для платформы LGA1151-v2 является непростой задачей даже для самых эффективных кулеров и систем жидкостного охлаждения.

В систему было установлено 16 Гбайт оперативной памяти стандарта DDR4-2666. Операционная система Windows 10 была записана на твердотельный накопитель Western Digital WDS100T1B0A. С обзором этого SSD вы можете познакомиться .

MSI GeForce GTX 1080 Ti GAMING X TRIO

Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, как видно из названия, оснащена кулером TRI-FROZR с тремя вентиляторами TORX 2.0. По данным производителя, эти крыльчатки создают на 22 % более мощный воздушный поток, оставаясь при этом практически бесшумными. Низкая громкость, как говорится на официальном сайте MSI, обеспечивается в том числе и за счет использования двухрядных подшипников. Отмечу, что радиатор системы охлаждения состоит из шести массивных теплотрубок, а его ребра выполнены в виде волн. По данным производителя, такая конструкция увеличивает общую площадь рассеивания на 10 %. Радиатор соприкасается в том числе и с элементами подсистемы питания. Чипы памяти MSI GeForce GTX 1080 Ti GAMING X TRIO дополнительно охлаждаются специальной пластиной.

Вентиляторы ускорителя начинают вращаться только в тот момент, когда температура чипа достигает 60 градусов Цельсия. На открытом стенде максимальная температура GPU составила всего 67 градусов Цельсия. При этом вентиляторы системы охлаждения раскручивались максимум на 47 % — это примерно 1250 оборотов в минуту. Реальная частота GPU в режиме по умолчанию стабильно держалась на уровне 1962 МГц. Как видите, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет приличный фабричный разгон.

Адаптер оснащен массивным бекплейтом, увеличивающим жесткость конструкции. Задняя сторона видеокарты имеет L-образную полосу со встроенной светодиодной подсветкой Mystic Light. Пользователь при помощи одноименного приложения может отдельно настроить три зоны свечения. К тому же вентиляторы обрамлены двумя рядами симметричных огней в форме драконьих когтей.

Согласно техническим характеристикам, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет три режима работы: Silent Mode — 1480 (1582) МГц по ядру и 11016 МГц по памяти; Gaming Mode — 1544 (1657) по ядру и 11016 МГц по памяти; OC Mode — 1569 (1683) МГц по ядру и 11124 МГц по памяти. По умолчанию у видеокарты активирован игровой режим.

С уровнем производительности референсной GeForce GTX 1080 Ti вы можете познакомиться в этой статье. А еще на нашем сайте выходил обзор MSI GeForce GTX 1080 Ti Lightning Z. Этот графический адаптер тоже оснащен системой охлаждения TRI-FROZR.

MSI Z370 GAMING M5

В основе сборки лежит материнская плата MSI Z370 GAMING M5 форм-фактора ATX. Это слегка видоизмененная версия платы MSI Z270 GAMING M5, обзор которой вышел на нашем сайте прошлой весной. Устройство отлично подойдет для разгоняемых K-процессоров Coffee Lake, так как конвертер питания с цифровым управлением Digitall Power состоит из пяти двойных фаз, реализованных по схеме 4+1. Четыре канала отвечают непосредственно за работу CPU, еще один — за встроенную графику.

Все компоненты цепей питания соответствуют стандарту Military Class 6 — это касается как дросселей с титановым сердечником, так и конденсаторов Dark CAP с не менее чем десятилетним сроком службы, а также энергоэффективных катушек Dark Choke. А еще слоты DIMM для установки оперативной памяти и PEG-порты для установки видеокарт облачены в металлизированный корпус Steel Armor, а также имеют дополнительные точки пайки на обратной стороне платы. Для ОЗУ применена дополнительная изоляция дорожек, а каждый канал памяти разведен в своем слое текстолита, что, по заявлению производителя, позволяет добиться более «чистого» сигнала и увеличить стабильность разгона модулей DDR4.

Из полезного отмечу наличие сразу двух разъемов формата M.2, которые поддерживают установку накопителей PCI Express и SATA 6 Гбит/с. В верхний порт можно установить SSD длиной до 110 мм, в нижний — до 80 мм. Второй порт дополнительно оснащен металлическим радиатором M.2 Shield, который контактирует с накопителем при помощи термопрокладки.

За проводное соединение в MSI Z370 GAMING M5 отвечает гигабитный контроллер Killer E2500, а за звук — чип Realtek 1220. Звуковой тракт Audio Boost 4 получил конденсаторы Chemi-Con, спаренный усилитель для наушников с сопротивлением до 600 Ом, фронтальный выделенный аудиовыход и позолоченные аудиоразъемы. Все компоненты звуковой зоны изолированы от остальных элементов платы токонепроводящей полосой с подсветкой.

Подсветка материнской платы Mystic Light поддерживает 16,8 млн цветов и работает в 17 режимах. К материнской плате можно подключить RGB-ленту, соответствующий 4-пиновый разъем распаян в нижней части платы. Кстати, в комплекте с устройством идет 800-мм удлинитель со сплиттером для подключения дополнительной светодиодной ленты.

Плата оснащена шестью 4-контактными разъемами для подключения вентиляторов. Общее количество подобрано оптимально, расположение — тоже. Порт PUMP_FAN, распаянный рядом с DIMM, поддерживает подключение крыльчаток или помпы с током силой до 2 А. Расположение опять же весьма удачное, так как к этому коннектору просто подключить помпу и от необслуживаемой СЖО, и от кастомной системы, собранной вручную. Система ловко управляет в том числе «карлсонами» с 3-контактным коннектором. Частота регулируется как по количеству оборотов в минуту, так и по напряжению. Есть возможность полной остановки вентиляторов.

Наконец, отмечу еще две очень полезные «фишки» MSI Z370 GAMING M5. Первая — это наличие индикатора POST-сигналов. Вторая — блок светодиодов EZ Debug LED, расположенный рядом с разъемом PUMP_FAN. Он наглядно демонстрирует, на каком этапе происходит загрузка системы: на стадии инициализации процессора, оперативной памяти, видеокарты или накопителя.

Thermaltake Core X31

Thermaltake Core X31

Выбор на Thermaltake Core X31 пал неслучайно. Перед вами Tower-корпус, который соответствует всем современным тенденциям. Блок питания устанавливается снизу и изолируется металлической шторкой. Присутствует корзина для установки трех накопителей форм-факторов 2,5’’ и 3,5’’, однако HDD и SSD можно закрепить на заградительной стенке. Есть корзина для двух 5,25-дюймовых устройств. Без них в корпус можно установить девять 120-мм или 140-мм вентиляторов. Как видите, Thermaltake Core X31 позволяет полностью кастомизировать систему. Например, на базе этого корпуса вполне реально собрать ПК с двумя 360-мм радиаторами СЖО.

Устройство оказалось очень просторным. За шасси полно места для прокладки кабелей. Даже при небрежной сборке боковая крышка легко закроется. Пространство под железо позволяет использовать процессорные кулеры высотой до 180 мм, видеокарты длиной до 420 мм и блоки питания длиной до 220 мм.

Днище и передняя панель оснащены пылесборными фильтрами. Верхняя крышка снабжена сетчатым ковриком, который тоже ограничивает попадание пыли внутрь и облегчает установку корпусных вентиляторов и систем водяного охлаждения.

Сверху Thermaltake Core X31 располагает двумя портами USB 2.0, двумя USB 3.0 (все — А-типа) и 3,5-мм разъемами для подключения наушников и микрофона. Здесь же расположены кнопки включения и перезагрузки.

Thermaltake Frio Silent 12

Охлаждать Core i7-8700K я доверил башенному кулеру Thermaltake Frio Silent 12. Согласно характеристикам, эта система способна отвести до 150 Вт тепла. В основе радиатора лежат три U-образные медные теплотрубки. Используется технология прямого контакта. При этом в сборе конструкция получилась достаточно компактной, кулер не перекрывает слоты DIMM. Высота у Thermaltake Frio Silent 12 тоже небольшая — 140 мм. 120-мм вентилятор вращается в диапазоне частот 500-1400 об/мин, но при использовании LNC-переходника, идущего в комплекте, дельта может быть снижена до 300-700 об/мин. Заявленный уровень шума — 19 и 12 дБ соответственно.

Thermaltake Frio Silent 12 устанавливается за счет простого, но надежного крепления. Помимо LGA1151, поддерживаются и другие актуальные в 2018 году платформы — AM4 и LGA2066. При этом есть возможность установить радиатор так, чтобы вентилятор направлял поток воздуха либо к задней стенке корпуса, либо к верхней.

Thermaltake Riing Plus 12 RGB Radiator Fan TT Premium Edition

Для проведения этого эксперимента я выбрал шесть 120-мм вентиляторов Thermaltake Riing Plus 12 RGB Radiator Fan TT Premium Edition. Очень удобно, что Thermaltake продает их в наборах по 3 и 5 штук.

Riing Plus RGB

Главной особенностью этих вентиляторов является наличие кольцевой RGB-подсветки, разделенной на 12 зон и поддерживающей 16,8 млн цветов. Самое интересное, что вентиляторы лишены стандартного 4-пинового разъема. На конце оплетенного провода выведен внутренний 9-контактный разъем (USB 2.0), который подключается к блоку управления, идущему в комплекте. Сам блок управления подключается к внутреннему порту USB 2.0 материнской платы. К одному такому блоку можно подключить до пяти вентиляторов. Единый кластер и вовсе позволяет объединить до 80 вентиляторов. Частота вращения, тип подсветки и яркость диода настраиваются при помощи программы Riing Plus RGB. Следовательно, для подключения шести вентиляторов необходимо использовать два блока управления.

В основе каждого Thermaltake Riing Plus 12 RGB Radiator Fan TT Premium Edition лежит гидродинамический подшипник. По данным производителя, вентилятор при температуре 25 градусов Цельсия должен проработать 40 000 часов. Частота вращения девяти лопастей меняется в диапазоне от 500 до 1500 об/мин с небольшой погрешностью — плюс-минус 20-30 об/мин. Максимальный воздушный поток составляет 48,34 CFM, а уровень шума — 24,7 дБ.

Thermaltake Smart Pro RGB 750W Bronze

Наконец, за питание компонентов системы в сборке отвечает блок питания Thermaltake Smart Pro RGB 750W Bronze. Из названия видно, что этот PSU тоже оснащен вентилятором с подсветкой. Она управляется при помощи кнопки, расположенной с внешней стороны. Пользователю доступны такие режимы, как цветовой перелив между 256 цветами или фиксация одного статичного цвета.

Меня же этот блок больше привлек тем, что обладает полностью модульной конструкцией. Все провода в комплекте — плоские, их проще прокладывать за разделительной стенкой корпуса. Мощности в 750 Вт с лихвой хватит для питания комплектующих. Даже с учетом разгона центрального процессора и памяти. По 12-вольтовой линии блок передает до 750 Вт, то есть Thermaltake Smart Pro RGB 750W Bronze обладает, как говорится, честными ваттами. В таком случае мощности этого устройства хватит даже для установки второй GeForce GTX 1080 Ti.

Производитель заявляет, что модель оснащена бесшумным 120-мм вентилятором. На задней стенке блока расположена кнопка Smart Zero Fan — эта функция позволяет не включать вентилятор до тех пор, пока нагрузка на блок питания не превысит 10 %. Если не использовать эту функцию, то при небольшой нагрузке вентилятор PSU будет вращаться с минимальной частотой.

Система в сборе

Вентиляция корпусов — мифы и реальность

Эта работа была прислана на наш «бессрочный» конкурс статей.

Охлаждение различных компонентов — одна из любимых тем оверклокеров (впрочем, не только их). Большое значение тут имеет хорошая вентиляция корпуса — ведь, снизив в нем температуру хотя бы на пару градусов, мы на столько же снизим и температуру всех находящихся внутри элементов. К сожалению, более-менее точной методики расчета вентиляции корпуса мне пока не встречалось. Зато в избытке из статьи в статью кочуют общие рекомендации, которые от частого употребления забронзовели и критически уже не воспринимаются.

Вот самые распространенные из таких мифов:

реклама

  1. Производительность вентиляторов на вдув должна примерно соответствовать производительности вентиляторов на выдув
  2. Впускать холодный воздух надо обязательно снизу, а выпускать сверху
  3. Чем больше в корпусе заполнено слотов расширения и 5-дюймовых отсеков, тем хуже его вентиляция
  4. Замена обычных шлейфов круглыми заметно улучшает вентиляцию корпуса.
  5. Передний вентилятор заметно снижает температуру в корпусе.

В результате борьба за вентиляцию корпуса зачастую сводится к установке вентиляторов максимально возможного размера и производительности во все штатные места, после чего в руки берется дрель (ножовка, электролобзик, зубило, кувалда, «болгарка», автоген — нужное подчеркнуть :-), и вентиляторы засовываются в нештатные места. После этого для пущего эффекта добавляется пара вентиляторов внутрь корпуса — обычно на обдув видеокарты и винчестера.

О затратах времени, сил и средств на все это лучше не говорить. Правда, результат обычно бывает неплохой, но вот шум, испускаемый этой «батареей» на полных оборотах, выходит за все мыслимые рамки, да и пыль он сосет со скоростью пылесоса. Как следствие, скоро корпус начинает обрастать фенбасами и реобасами, становясь похожим на микшерский пульт средней руки. А процесс запуска игры вместо простого кликанья мышкой теперь напоминает подготовку к взлету авиалайнера — надо не забыть прибавить обороты всем этим вентиляторам. В этой статье я постараюсь показать, как можно добиться похожего эффекта «малой кровью».

Бег по диагонали

Все массовые корпуса можно разделить на три вида — десктоп, тауэр с верхним (горизонтальным) БП и тауэр с боковым (вертикальным) БП. Основную долю рынка занимают два последних. У каждого есть свои достоинства и недостатки, но наихудшим с точки зрения вентиляции считается третий вид — тут процессор оказывается в непродуваемом «кармане» рядом с блоком питания, и организовать туда подачу свежего воздуха достаточно трудно.

Общие принципы вентиляции достаточно просты. Во-первых, вентиляторы должны не мешать естественной конвекции (снизу вверх), а помогать ей. Во-вторых, нежелательно иметь непродуваемые застойные зоны, особенно в местах, где естественная конвекция затруднена (в первую очередь это нижние поверхности горизонтальных элементов). В-третьих, чем больше объем воздуха, прокачиваемого через корпус, тем меньше в нем разница температур по сравнению с «забортной». В-четвертых, поток очень не любит различных «выкрутасов»- изменения направления, сужения-расширения и т.п.

Как происходит воздухообмен? Допустим, вентилятор закачивает воздух в корпус, при этом давление в нем растет. Зависимость расхода от давления называется рабочей характеристикой вентилятора. Чем больше давление, тем меньше будет закачивать воздух вентилятор и тем больше его будет выходить через вентиляционные отверстия. В какой-то момент количество закачиваемого воздуха сравняется с количеством выходящего, и давление дальше повышаться не будет. Чем больше площадь вентиляционных отверстий, тем при меньшем давлении это произойдет и тем лучше будет вентиляция. Поэтому простым увеличением площади этих отверстий «без шума и пыли» иногда можно добиться большего, чем установкой дополнительных вентиляторов. А что изменится, если вентилятор не вдувает, а выдувает воздух из корпуса? Поменяется только направление потоков, расход останется тем же самым.

«Классические» варианты организации вентиляции корпуса с верхним БП показаны на рис.1-3. Собственно, это фактически три разновидности одного и того же способа, когда воздух идет по диагонали корпуса (от переднего нижнего угла в задний верхний). Красным цветом показаны непродуваемые зоны. От того, насколько плотно они заполнены, сопротивление потоку никак не зависит — он все равно проходит мимо них. Обратите внимание на нижнюю зону, в которой находится видеокарта — один из самых критических к перегреву компонентов компьютера. Установка переднего вентилятора позволяет подать к ней (а заодно и к южному мосту) немного свежего воздуха, сбив температуру на пару градусов. Правда, при этом «на обочине жизни» оказывается винчестер (если он установлен в штатное место). На рис.4 показано, почему так происходит. Тут схематически представлены потоки воздуха через вентилятор (более темный цвет соответствует большей скорости). Со стороны всасывания воздух входит равномерно со всех сторон, при этом его скорость по мере удаления от вентилятора быстро падает. Со стороны нагнетания «дальнобойность» воздушного потока заметно больше, но только вдоль оси — в стороне от нее образуется непродуваемая зона. Такая же «аэродинамическая тень» получается и за втулкой вентилятора, но она быстро сходит на нет.

Для иллюстрации приведу пример из жизни. В поисках наилучшего способа охлаждения своего десктопа, я перевернул вентилятор в БП на вдув. По идее, это должно улучшить охлаждение БП — ведь теперь он обдувается свежим воздухом, а не б/у из корпуса. Однако термодатчик БП показал прямо противоположное — температура выросла на 2 градуса! Как такое могло произойти? Ответ прост — плата с датчиком установлена в стороне от вентилятора и поэтому оказалась в аэродинамической тени. Поскольку вместе с термодатчиком в этой тени оказались и некоторые другие элементы, во избежание выхода их из строя был восстановлен статус кво.

Критерий истины

Теперь от теории перейдем к практике. Наша главная задача — увеличить площадь вентиляционных отверстий, причем желательно быстро и без применения слесарных инструментов. Их площадь должна быть как минимум равна эффективной площади вентилятора (то есть площади, ометаемой лопастями), а лучше превышать ее раза в полтора. Например, для 80-мм вентилятора эффективная площадь равна примерно 33 кв.см. Если вентиляторов несколько и они все работают на выдув (или, наоборот, все на вдув), их эффективная площадь складывается. Особенно эта мера актуальна для корпусов старых конструкций, которые еще помнят Пентиум-2 и тем не менее продолжают выпускаться (и продаваться) до полного износа штампов.

К подобным «ветеранам» относится и мой десктоп Codegen, переживший уже три материнки. Из «удобств» он имеет место под 90-мм передний вентилятор, который по мысли конструкторов должен засасывать воздух через щель внизу передней панели площадью всего 5 кв. см., да символические дырочки диаметром 1,5 мм напротив него (позже я их рассверлил в шахматном порядке до 4 мм — так даже красивее стало). Разумеется, корпус не подводная лодка, воздух будет подсасываться и через другие мелкие щели и неплотности, точный учет которых невозможен. Но все равно вентиляция в штатном режиме напоминает бег в противогазе.

Конфигурация компьютера при тестировании:

  • CPU Athlon T-red-B 1,6v. 1800+@166Х11, кулер Evercool ND15-715 подключен через 3-поз. переключатель (использовалась вторая скорость, 2700 об/мин)
  • M/b Epox 8RDA3, обдув моста отключен
  • video Asus 8440 Deluxe (GF4ti4400), акт. кулер закрывает чип и память.
  • 512 Mb RAM Hynix
  • HDD Samsung 7200 об/мин
  • CD-ROM, FDD, Rack-контейнер
  • Modem
  • TV/capture card Flyvideo
  • БП Codegen 250w
  • Суммарная мощность (без БП) — порядка 180 Вт

Температура процессора мерялась через Сандру, видеокарты — по встроенным датчикам через SmartDoctor, в корпусе под верхней крышкой над процессором (не забыли — корпус десктоп) был размещен выносной датчик электронного термометра, вторым датчиком этого термометра измерялась температура в комнате. Затем результаты были приведены к внешней температуре 23 градуса.

Система нагружалась запуском в цикле игровых тестов 3DMark2001SE. В исходном состоянии температура в корпусе превышала внешнюю на 15 градусов, температура видеокарты (чип/память) была больше на 55/38 град., процессора на 39 град. Для сравнения были проведены измерения с открытой крышкой. Результаты: температура видеокарты больше внешней на 44/30 градусов, процессора — на 26 градусов.

Сначала попробуем пойти по традиционному пути. Какая первая мысль приходит в голову при взгляде на этот корпус? «Раз есть отверстие под вентилятор, так должно же там хоть что-то стоять» (вполне по «Золотому теленку»). Ну что же, поставим. Каков результат? Датчик температуры в корпусе вообще не отреагировал на наши манипуляции, температура процессора снизилась на 1 градус, а видеокарты на 4-5 градусов (кстати, примерно такой же результат дал и другой традиционный шаг — установка рядом с видеокартой бловера Gembird SB-A). Собственно, на этом «традиционный путь» и заканчивается.

Теперь все вернем в исходное состояние и пойдем другим путем — вытащим две заглушки слотов расширения рядом с видеокартой. Этим убивается сразу два зайца: появляется новая «дыра» для вентиляции корпуса и ликвидируется застойная зона у видеокарты. Вдобавок выломаем защитную «гребенку» у переднего воздухозаборника (благо он снизу и его все равно не видно) — его площадь при этом утроится, а суммарный размер вентиляционных отверстий составит 45 кв. см.

Результат не заставил себя ждать — температура в корпусе упала на два градуса, а видеокарта порадовала еще больше, скинув сразу 9 градусов на чипе и 7 градусов на памяти. Согласитесь, неплохой результат, к тому же совершенно бесплатный. Этот вариант можно рекомендовать для карт с пассивным кулером как альтернативу установке вентилятора. А если этого мало? Добавление переднего вентилятора на вдув приводит к парадоксальному результату — температура и корпуса, и видеокарты… повышается! Немного, всего на один градус, но тем не менее… Объясняется это просто — теперь больше воздуха входит в корпус через переднее отверстие и меньше — через заднее мимо видеокарты.

А если поставить его на выдув? Тут совсем другое дело. Оба вентилятора (в БП и дополнительный) теперь включены параллельно, их расходы складываются, и вот вам результат — видеокарта «похолодала» еще на 3-4 градуса, а общее понижение температуры по сравнению с исходным вариантом составило 12 градусов по видеочипу, 10 градусов по видеопамяти и 5 градусов в корпусе (и, соответственно, у процессора). Обратите внимание, что видеокарта здесь холоднее, чем в открытом корпусе! Расходы же ограничились покупкой одного корпусного вентилятора средней мощности.

Наконец, последний вариант, «экстремальный» — все три вентилятора (БП, передний и бловер) на выдув, дополнительно сзади открываем еще один слот. Бловер был установлен в нижнем (из двух) пятидюймовом отсеке вместо вынутого Rack-контейнера. Результаты — процессор «похолодал» по сравнению с предыдущим вариантом на 4 градуса (и теперь на те же 4 градуса горячее самого себя в открытом корпусе), а видеокарта скинула еще пару градусов. Правда, датчик температуры в корпусе никакого снижения не показал — холодный воздух проходит ниже его, поскольку дополнительные вентиляторы забирают воздух не сверху, а из середины корпуса. Общие результаты сведены в таблицу. На ней показана абсолютная температура компонентов, приведенная к 23 градусам в комнате.

CPU Mem GPU
Исходный корпус 62 61 78
Вент. на вдув 61 56 74
Откр. слоты 60 54 69
Откр. слоты+ вент.на выдув 57 49 65
Откр. слоты+ вент.и бловер 53 48 63
Открытый корпус 49 52 67

Снизу вверх, наискосок

Теперь, когда мы уяснили и проверили на практике общие принципы эффективной вентиляции, применим их к самому распространенному корпусу — тауэру с верхним БП.

На рис.6 показан самый эффективный способ охлаждения такого корпуса. Дополнительный вентилятор на задней стенке фактически обеспечивает такой же режим продувки, как в моем последнем эксперименте. Поскольку практически половина тепла выделяется процессором, есть смысл подавать часть холодного воздуха непосредственно в зону его работы. Это осуществляется через свободный трехдюймовый или пятидюймовый отсек на передней стенке — обе его заглушки (пластмассовая и металлическая) удаляются, а уж как декорировать образовавшуюся дыру — вопрос умения и фантазии. В простейшем случае можно купить панельку с парой маленьких вентиляторов (которые сразу снять, толку от них ноль), благо таких «прибамбасов» для пятидюймовых отсеков выпускается множество разновидностей — от обычной решетки до панелек со встроенным электронным индикатором, USB-портами или фенбасами (хотя площадь решетки у них меньше).

Неплохую продувку обеспечивает и установка Rack-контейнера. Учтите, что все это хозяйство надо ставить в самый нижний отсек. Выбор конкретного варианта зависит от того, что в первую очередь надо «заморозить». Если перегревается процессор или память, отверстия надо сделать побольше, а если видеокарта — можно вообще обойтись без них, зато внизу открыть побольше слотов. Суммарная площадь отверстий при этом должна быть как минимум 70-80 кв. см. в зависимости от размера вентиляторов. Для справки: площадь одного отверстия слота равна 13 кв. см., открытого трехдюймового отсека — 30 кв. см., пятидюймового — 15-30 кв. см. с вышеописанной декоративной решеткой и 60 кв. см для полностью открытого. Еще 10-15 кв. см. может дать удаление заглушек с отверстий под порты на задней стенке. Ах да, чуть не забыл, есть же еще штатный воздухозаборник в нижней части передней панели площадью 5-30 кв. см., а у некоторых корпусов еще и дырочки в боковых стенках.

Если на верхней панели есть штатное отверстие под вентилятор, грех его не использовать. Поставьте туда что-нибудь не слишком мощное на выдув. Если такого отверстия нет, вырезать его не стоит. Лучше купите специальный бловер и установите его в самый верхний 5-дюймовый отсек (рис. 7). Это будет особенно полезно тем, у кого по какой-либо причине отсутствует отверстие под дополнительный вентилятор под БП или оно задействовано для непосредственного охлаждения процессора. Но в этом варианте стоит сделать воздуховод, направляющий свежий воздух из нижнего пяти- или трехдюймового отсека в зону процессора. Без него значительная часть этого потока может сразу уйти в бловер, не захватив по дороге достаточно тепла.

На рис. 8 показана довольно экзотическая схема с нижним вентилятором, работающим на выдув. Она хуже двух предыдущих и может использоваться лишь в крайнем случае, когда в первую очередь надо охладить видеокарту. Фактически эта схема обеспечивает два независимых потока — первый (нижний, от задней стенки к передней) охлаждает видеокарту, платы расширения и южный мост, а второй (от передней стенки к задней) охлаждает верхнюю половину корпуса. Преимущества такой схемы — увеличивается суммарная производительность вентиляторов на выдув, значительная часть горячего воздуха от видеокарты сразу удаляется наружу, меньше общее сопротивление потоку в корпусе.

Но есть и существенные недостатки. Главный из них в том, что в угоду дизайну нижние отверстия в передней стенке, через которые выдувается воздух, обычно имеют площадь намного меньшую, чем эффективная площадь переднего вентилятора. Вдобавок потоку приходится дважды менять направление, что он очень не любит. В результате получается тот же «бег в противогазе» — например, если отверстие в корпусе вдвое меньше, чем у вентилятора, производительность последнего тоже падает примерно вдвое, и это еще без учета противодавления в корпусе. А вот шум, наоборот, будет больше — просачиваясь через узкие щели, маленькие отверстия, затейливые «загогулины» и прочие дизайнерские изыски в передней панели, поток воздуха может издавать отнюдь не художественный свист. Вдобавок шум переднего вентилятора (в отличие от заднего) не экранируется корпусом.

Повысить эффективность переднего вентилятора можно, если впустить дополнительный воздух в полость между передней панелью и металлической передней стенкой корпуса. Для этого пойдем по проторенному пути — вытащим пластмассовую (на этот раз только пластмассовую!) заглушку нижнего трехдюймового отсека. Но ведь нам надо еще подать холодный воздух в верхнюю половину корпуса, причем тоже спереди. Эти потоки надо разделить с помощью перегородки под нижним пятидюймовым отсеком.

Теперь посмотрим на движение потока в корпусе. В первой и второй схеме основной поток движется снизу вверх. Сопротивление потоку определяется самым узким местом на его пути. В данном случае это сечение на уровне видеокарты: она сама занимает добрую половину корпуса, а с другой стороны стоит винчестер с торчащим шлейфом. Поскольку видеокарту в другое место сдвинуть нельзя, остается переставить винчестер. Его можно опустить вниз или поставить в один из 5-дюймовых отсеков (лучше в тот, который используется в качестве воздухозаборника). В обоих случаях винчестер будет отлично обдуваться, что благотворно скажется на его здоровье. Впрочем, самое узкое место на пути потока на самом деле не здесь, а при входе в корпус — там его скорость больше на порядок, а аэродинамические потери пропорциональны квадрату скорости. Поэтому «прилизывание» и укладка шлейфов с точки зрения воздухообмена практически ничего не дает.

Слышу, слышу ехидные голоса — а как же страшилки про пыль, которую при установке всех вентиляторов на выдув якобы будет засасывать в диких количествах через CD-ROM и FDD? Отвечаю. Воздух идет по пути наименьшего сопротивления и при хорошей вентиляции не пойдет в узкие щели, когда рядом есть большие окна. Да и штатная система вентиляции, напомню, работает на выдув, причем в брендовых корпусах и ноутбуках тоже (а там не дураки сидят, как любят говорить некоторые коллеги, когда другие аргументы заканчиваются 🙂

В заключение скажем пару слов про тауэры с боковым БП. Несмотря на большое количество отверстий, расположенных в самых неожиданных местах, вентиляция у этих корпусов отвратительная. Если обдув видеокарты еще можно улучшить традиционным способом (открыванием соседних слотов), то с процессором придется повозиться. Для хорошего продува его «кармана» нужно как-то удалить оттуда горячий воздух. Самое эффективное — врезка в верхнюю панель вентилятора на выдув, но это весьма трудоемко. Поэтому попробуем альтернативные способы. В корпусах InWin вверху на задней стенке есть вентиляционные отверстия непонятного назначения — теплый воздух оттуда выходить не будет, т.к. в корпусе разрежение от вентилятора БП, а подача холодного воздуха под самый потолок малоэффективна. Чтобы они не пропадали, поставьте там бловер на выдув. В корпусах, где нет и этого, бловер можно направить вперед и соединить воздуховодом с пустым пятидюймовым отсеком (разумеется, вытащив из него обе заглушки, рис.9).

Другой вариант — установка БП с мощным вентилятором, в котором забор воздуха осуществляется только со стороны «кармана». В продаже встречаются БП, имеющие на боковой стенке 120-мм вентилятор — по идее, его должно хватить для хорошего проветривания. Можно сделать и наоборот — подать вентилятором или бловером по воздуховоду в эту зону свежий воздух в расчете на то, что струя «добьет» до непродуваемых уголков. В общем, поле для экспериментов эти корпуса дают необъятное.

Еще осталось несколько мифов по поводу выбора вентиляторов… но этому вопросу стоит посвятить отдельную статью.

Владимир Куваев aka kv1

Как установить кулер на вдув

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *