Как найти полезную работу?

Формула полезной работы в физике для КПД

Определение 1

КПД (коэффициент полезного действия) — величина, характеризующая соотношение используемой энергии к затрачиваемой, т.е. энергетическую эффективность системы.

КПД измеряется в процентах или указывается как десятичная дробь от 0 до 1. КПД 50% (или, что тоже самое– 0,5) означает, что только половина энергии используется для выполнения работы. Остальная рассеивается в окружающем пространстве, как правило, в форме тепла.

Замечание 1

Коэффициент полезного действия паровозов, применявшихся для железнодорожных перевозок в XIX — первой половине XX вв., составлял менее 10%, т.е. 90 и более процентов тепла от сжигаемого в топках угля улетучивалось в атмосферу, не выполняя полезной работы по вращению колес, приводящему к движению состав. Для сравнения: КПД пришедших на смену паровозам тепловозов (в них используются не паровые, а дизельные двигатели) достигает 40%.

КПД в формулах обозначают греческой буквой $\eta$ (эта).

$\eta = \frac{A_п}{A_з}$

, где $A_п$ — полезная работа, $A_з$ — затраченная.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Полезная работа и потери энергии

«Полезность» выполняемой работы — величина субъективная, связанная с человеческим восприятием, поэтому о КПД говорят чаще всего применительно к искусственно созданным системам. Несмотря на то, что технологии совершенствуются, избежать потерь в рукотворных системах инженерам не удастся:

  • в механических устройствах часть затрачиваемой энергии всегда тратится на преодоление сил трения между соприкасающимися деталями (эти силы уменьшают за счет более тщательной обработки и смазки);
  • в электрических системах часть энергии рассеивается в виде тепла при преодолении сопротивления проводников (явление сверхпроводимости еще не применимо к практике и требует низких температур);
  • в нагревательных приборах утечки происходят в силу дефектов теплоизоляции и т.п.

Таким образом,

$A_з$ > $A_п$

, где $A_з$ — работа затраченная, $A_п$ — работа полезная.

Потери энергии можно сводить к минимуму, но полностью исключить их невозможно. Какое бы совершенное устройство мы не придумали, КПД никогда не достигнет единицы в силу второго закона термодинамики, действие которого исключает создание механизмов с КПД равным или большим 100%.

КПД различных физических процессов

Методики подсчета КПД разнятся в зависимости от физической природы явлений, задействованных в преобразующих энергию системах.

При практических расчетах, связанных с движением, знаменатель формулы КПД удобнее представить не как работу (произведение силы на расстояние), а как затраченную энергию, выделившуюся, например, при сжигании топлива:

$\eta = \frac{A_п}{Q}$

, где $A_п$ — выполненная системой полезная работа, $Q$ — затраченная системой энергия.

Например, зная сколько бензина истрачено двигателем автомобиля (количество выделившегося в результате тепла можно легко подсчитать), а также массу, скорость и пройденное расстояние, легко найти КПД.

Если речь идет не об автомобиле с двигателем внутреннего сгорания, а об электромобиле, то затраты энергии в знаменателе можно подсчитать как произведение средних тока и напряжения за время движения рассматриваемого транспортного средства.

Поскольку мощность представляет собой работу, выполняемую в единицу времени, КПД иногда бывает удобно посчитать как соотношение входной и выходной мощностей системы:

$\eta = \frac{P_{out}}{P_{in}}$

, где $P_{in}$ — мощность на входе системы, $P_{out}$ — на выходе.

Такой подход удобен, например, при расчете КПД солнечных батарей. В знаменателе в этом случае будет мощность светового излучения, падающего на их поверхность, в числителе — мощность генерируемого тока.

Пример 1

Лебедка, потребляющая мощностью 500 Вт, за время 10 с подняла груз массой 70 кг на высоту 5м. Найти КПД лебедки.

Лебедка преодолела силу тяжести, совершив работу

>КПД

Полезная и затраченная работа

На предыдущих занятиях при рассмотрении устройства и работы простейших механизмов мы не учитывали трение между деталями механизмов, вес механизмов – это идеализированные условия. На практике работа, совершаемая приложенной к телу силой, называется затраченной, она всегда больше работы, которая совершается по перемещению груза, поднятию груза или преодолению сопротивления, эта работа называется полезной (Рис. 1). Полезная работа меньше затраченной .

Рис. 1. Поднимая груз, мы поднимаем крепление, веревки, преодолеваем трение

Коэффициент полезного действия

Отношение полезной работы к затраченной работе, выраженной в процентах, называется коэффициентом полезного действия (КПД): .

КПД выражается в процентах, чтобы его рассчитать, необходимо знать работу полезную и работу затраченную. При этом золотое правило механики не нарушается, потому что часть работы необходимо затратить, например, на трение, и, если сложить эти расходы, получается затраченная работа.

Эксперимент

На наклонной плоскости перемещаем каретку с грузом, с помощью динамометра узнаем вес каретки с грузом, в нашем случае вес 3 Н (Рис. 2).

Рис. 2. Вес каретки с грузом

Далее будем стараться перемещать каретку по наклонной плоскости, заметим при этом показания динамометра, который покажет силу тяги, прикладываемую к каретке. При равномерном перемещении сила тяги равна 1,8 Н. Узнаем путь каретки, он составляет 0,38 м, высота на которую каретку подняли 0,18 м (Рис. 3).

Рис. 3. Поднятие каретки с грузом по наклонной плоскости

Рассчитываем полезную и затраченную работу. Мы подняли груз весом P на высоту h – это полезная работа: .

Сила тяги и путь пройденный кареткой – это затраченная работа: .

Определим КПД: .

Задача

Условие: с помощью неподвижного блока груз массой m = 100 кг, подняли на высоту h = 5 м. Необходимо посчитать затраченную работу , если КПД этой установки = 70% (Рис. 4).

Рис. 4. Работа силы тяжести при поднятии груза

Решение

В формулу расчета КПД запишем известные нам данные и преобразуем, разделив левую и правую часть на 100%.

Из этого выражения получим .

Чтобы рассчитать полезную работу, необходимо выяснить, что полезного совершалось в данной задаче. Груз массой 100 кг поднимали на высоту 5 м.

– ускорение свободного падения

Объединяем все полученные формулы вместе: .

Проверка единиц измерения: .

Ответ: приблизительное значение работы составляет 7143 Дж.

Когда конструкторы создают различные механизмы, они стремятся увеличить КПД путём уменьшения трения между частями механизма (смазочные материалы, подбор материалов) или уменьшения веса механизма.

Список рекомендованной литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7–9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.

Рекомендованные ссылки ресурсы сети Интернет

Интернет-портал «» (Источник)

Домашнее задание

  1. На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложили силу 250 Н, груз подняли на высоту 0,08 м, при этом точка приложения движущей силы опустилась на высоту 0,4 м. Найти КПД рычага.
  2. Ящик массой 54 кг с помощью подвижного блока подняли на некоторую высоту. К тросу блока была приложена сила, равная 360 Н. Определите коэффициент полезного действия подвижного блока.
  3. По наклонному настилу длиной 3 м рабочий вкатил в кузов бочку массой 55 кг. Определите КПД погрузки, если рабочий прилагал силу 330 Н, а высота кузова машины 1,5 м.

Понятие КПД: определение, формула и применение в физике

Физика — это наука, которая изучает процессы, происходящие в природе. Наука эта очень интересная и любопытная, ведь каждому из нас хочется удовлетворить себя ментально, получив знания и понимание того, как и что в нашем мире устроено. Физика, законы которой выводились не одно столетие и не одним десятком ученных, помогает нам с этой задачей, и мы должны только радоваться и поглощать предоставленные знания.

Но в то же время физика — наука далеко непростая, как, собственно, и сама природа, но разобраться в ней было бы очень интересно. Сегодня мы будем говорить о коэффициенте полезного действия. Мы узнаем, что такое КПД и зачем он нужен. Рассмотрим все наглядно и интересно.

Определение и расшифровка КПД

Расшифровка аббревиатуры — коэффициент полезного действия. Однако и такое толкование с первого раза может оказаться не особо понятным. Этим коэффициентом характеризуется эффективность системы или какого-либо отдельного тела, а чаще — механизма. Эффективность характеризуется отдачей или преобразованием энергии.

Этот коэффициент применим практически ко всему, что нас окружает, и даже к нам самим, причём в большей степени. Ведь совершаем мы полезную работу все время, только вот как часто и насколько это важно, уже другой вопрос, с ним и используется термин «КПД».

Важно учесть, что этот коэффициент — величина неограниченная, она, как правило, представляет собой либо математические значения, к примеру, 0 и 1, либо же, как это чаще бывает — в процентах.

В физике этот коэффициент обозначается буквой Ƞ, или, как её привыкли называть, Эта.

Полезная работа

При использовании каких-либо механизмов или устройств мы обязательно совершаем работу. Она, как правило, всегда больше той, что необходима нам для выполнения поставленной задачи. Исходя из этих фактов различается два типа работы: это затраченная, которая обозначается большой буквой, А с маленькой з (Аз), и полезная — А с буквой п (Ап). Для примера, возьмем такой случай: у нас есть задача поднять булыжник определенной массой на определенную высоту. В этом случае работа характеризует только преодоление силы тяжести, которая, в свою очередь, действует на груз.

В случае когда для подъема применяется какое-либо устройство, кроме силы тяжести булыжника, важно учесть еще и силу тяжести частей этого устройства. И кроме всего этого, важно помнить, что, выигрывая в силе, мы всегда будем проигрывать в пути. Все эти факты приводят к одному выводу, что затрачиваемая работа в любом варианте окажется больше полезной, Аз > Ап, вопрос как раз заключается в том, насколько её больше, ведь можно максимально сократить эту разницу и тем самым увеличить КПД, наш или нашего устройства.

Полезная работа — это часть затрачиваемой, которую мы совершаем, используя механизм. А КПД — это как раз та физическая величина, которая показывает, какую часть составляет полезная работа от всей затраченной.

Итог:

  • Затрачиваемая работа Aз всегда больше полезной Ап.
  • Чем больше отношение полезной к затрачиваемой, тем выше коэффициент, и наоборот.
  • Ап находится произведением массы на ускорение свободного падения и на высоту подъема.

Физическая формула КПД

Существует определенная формула для нахождения КПД. Она звучит следующим образом: чтобы найти КПД в физике, нужно количество энергии разделить на проделанную системой работу. То есть КПД — это отношение затраченной энергии к выполненной работе. Отсюда можно сделать простой вывод, что тем лучше и эффективнее система или тело, чем меньше энергии затрачивается на выполнение работы.

Сама формула выглядит кратко и очень просто Ƞ будет равняться A/Q. То есть Ƞ = A/Q. В этой краткой формулы и фиксируют нужные нам элементы для вычисления. То есть A в этом случае является использованной энергией, которая потребляется системой во время работы, а большая буква Q, в свою очередь, будет являться затраченной A, или опять же затраченной энергией.

В идеале КПД равен единице. Но, как это обычно бывает, он её меньше. Так происходит по причине физики и по причине, конечно же, закона о сохранении энергии.

Все дело в том, что закон сохранения энергии предполагает, что не может быть получено больше А, чем получено энергии. И даже единице этот коэффициент будет равняться крайне редко, поскольку энергия тратится всегда. И работа сопровождается потерями: к примеру, у двигателя потеря заключается в его обильном нагреве.

Итак, формула КПД:

Ƞ=А/Q, где

  • A — полезная работа, которую выполняет система.
  • Q — энергия, которую потребляет система.

Применение в разных сферах физики

Примечательно, что КПД не существует как понятие нейтральное, для каждого процесса есть свой КПД, это не сила трения, он не может существовать сам по себе.

Рассмотрим несколько из примеров процессов с наличием КПД.

К примеру, возьмем электрический двигатель. Задача электрического двигателя — преобразовывать электрическую энергию в механическую. В этом случае коэффициентом будет являться эффективность двигателя в отношении преобразования электроэнергии в энергию механическую. Для этого случая также существует формула, и выглядит она следующим образом: Ƞ=P2/P1. Здесь P1 — это мощность в общем варианте, а P2 — полезная мощность, которую вырабатывает сам двигатель.

Нетрудно догадаться что структура формулы коэффициента всегда сохраняется, меняются в ней лишь данные, которые нужно подставить. Они зависят от конкретного случая, если это двигатель, как в случае выше, то необходимо оперировать затрачиваемой мощностью, если работа, то исходная формула будет другая.

Теперь мы знаем определение КПД и имеем представление об этом физическом понятии, а также об отдельных его элементах и нюансах. Физика — это одна из самых масштабных наук, но её можно разобрать на маленькие кусочки, чтобы понять. Сегодня мы исследовали один из этих кусочков.

Видео

Это видео поможет вам понять, что такое КПД.

Что такое КПД источника тока

Неподвижный заряд не выполняет работу. Уменьшение энергетического запаса в аккумуляторе происходит за счет химических реакций. Фактически это свидетельство несовершенства конструкции.

После подключения источника к проводникам с подключенной нагрузкой заряды перемещаются по цепи, выполняя определенную работу. Полезная составляющая мощности (Pпол) определяется параметрами внешнего контура. Полная (Pп) – содержит совокупные затраты. Если электротехник пользуется привычными терминами, он быстро установит для коэффициента полезного действия формулу:

КПД = Рпол/Рп = (U*I)/(Е*I) = U/E.

Для чего нужен расчет КПД

Наглядный пример недостаточно эффективного устройства – классическая лампа накаливания. Пропускание тока через вольфрамовую спираль повышает температуру проводника. В рабочем режиме значительное количество потребляемой мощности расходуется на генерацию излучения. Однако к видимой части диапазона относится только небольшая часть спектра. Так как вырабатываемая теплота не выполняет полезного действия, соответствующие энергетические затраты следует узнавать по излишним.

Если выразить КПД через мощность в этом случае, следует одновременно учесть долговечность. Эта методика повышает точность оценки, так как подразумевает необходимость периодической замены испорченного излучателя.

В типовом рабочем режиме лампа накаливания нагревает нить до 2600-2800К. При таком значении срок службы составляет 900-1200 часов, КПД – от 5 до 7%. Увеличить эффективность в 2-5 раз можно повышением температуры до 3400-3600К. Однако в этом варианте долговечность уменьшается до 5-6 часов. Подобные практические характеристики нельзя признать удовлетворительными.

Эта таблица демонстрирует превосходство экономичных источников света. Срок службы современных светодиодов измеряется десятками тысяч часов. Даже на завершающих этапах рабочих циклов обеспечиваются высокая яркость и качественное распределение спектральных составляющих.

Нахождение тока в полной цепи

Для изучения эффективности потребления энергии в электротехнике можно использовать базовые формулы. В полной цепи по базовому определению рассматривают источник тока (I) с внутренним сопротивлением (r). Подключенная нагрузка потребляет определенную мощность. Она характеризуется электрическим сопротивлением R.

Прохождение тока по такой цепи обеспечивает энергия источника, которая определена значением электродвижущей силы (ЭДС – E). Ее можно выразить как отношение выполненной сторонними силами работы (A) по передвижению заряда (q) с положительным знаком по соответствующему контуру. С учетом известной формулы I= q/t несложно определить зависимость между рассматриваемыми величинами:

где t – контрольный временной интервал.

Отдельно можно рассмотреть участки с внутренним и внешним сопротивлением. Каждый из них выделяет определенное законом Джоуля-Ленца количество теплоты Q = I2 * R * t. Так как энергия не пропадает бесследно, можно сделать правильный вывод о равенстве Q = A. Подставив значения в исходное выражение, получают:

ЭДС полной цепи вычисляется сложением двух падений напряжений на внутреннем и внешнем участке. Элементарное преобразование позволяет узнать силу тока в соответствующем проводнике:

Расчет КПД электрической цепи

После определения основных параметров можно перейти к изучению эффективности системы. Для вычисления КПД обозначение потребления электроэнергии удобно сделать по стандартным формулам.

Выполняемая работа в цепи определяется количеством перемещенных зарядов, а также скоростью данного процесса. Для объективной оценки последнего параметра измерения выполняют с учетом определенных временных интервалов (Δt). Работу и мощность можно определить следующими формулами:

Как и в классической механике, работу можно измерить в джоулях (Дж). Мощность, по стандартам СИ, указывают в ваттах (Вт). Зависимость между отмеченными единицами:

Вт = Дж/ с (для электрических цепей вольт * ампер).

Для обозначения КПД символ «η» применяют в типовых формулах. Базовое определение с учетом приведенных замечаний можно преобразовать следующим образом:

где:

  • A – выполненная работа;
  • Q – энергия, полученная из источника.

Любое подключенное устройство характеризуется определенными потерями. Резистор выделяет тепло. Трансформатор тратит часть энергии на преобразование электромагнитных волн. На примере лампы накаливания показана низкая эффективность изделия. С применением КПД увеличивают объективность оценки разных систем, подключаемых потребителей, генераторов. В следующем пункте представлена технология проверки силовых агрегатов.

Методика и порядок измерений

Идеальные условия можно рассматривать только в теории. Для корректной оценки замкнутой системы необходимо учитывать энергетические потери на выполнение необходимой работы. Ниже показано, как определить КПД механических силовых агрегатов с применением разных исходных данных.

Движению поршня в блоке цилиндров двигателя внутреннего сгорания препятствует сила трения. Поступательно-возвратные движения в ходе стандартного цикла преобразуются во вращение вала с дополнительными потерями. Высокая температура не выполняет в данном случае полезные функции. Чтобы не допустить разрушения агрегата, необходимо поддерживать определенный тепловой режим. Приходится обеспечить циркуляцию охлаждающей жидкости с помощью помпы.

Понятно, что в подобном случае сделать общий КПД расчет с учетом каждого компонента конструкции непросто. Однако можно узнать в ходе эксперимента с высокой точностью, какое количество топлива (масса – m) придется затратить на 100 км пробега машины за соответствующее время (t). Далее нужно взять из сопроводительной документации (справочников) следующие данные:

  • мощность мотора – Рм;
  • удельную теплоту бензина – У.

В этом варианте для расчета КПД двигателя формула преобразуется следующим образом:

Для отображения результата в % итоговое значение умножают на 100.

Если мощность силового агрегата не известна, определять эффективность можно по массе авто (Mа). Измерять ее несложно с помощью промышленных весов (на станции техосмотра, элеваторе). В ходе эксперимента разгоняются с места до контрольной скорости (v). Массу топлива вычисляют по объему (переведенному из литров в м кв.), который умножают на плотность (справочная величина в кг на куб. м).

В этом случае КПД расчет находят по формуле:

η = (Mа * v2)/(2 * У * m).

Следует перевести предварительно скорость из км/час в м/с.

Проще измеряется эффективность электродвигателя с паспортной мощностью (P). Его подключают к источнику питания с известным напряжением (U). После выхода на стабильную частоту вращения фиксируют значение тока (I) в цепи. Далее применяют классическую формулу:

Если сопроводительная документация отсутствует, технические параметры берут с официального сайта производителя. Однако и в этом случае следует понимать ограниченную точность подобных данных. В процессе эксплуатации характеристики могут ухудшиться за счет естественного износа. Погрешность увеличивается после длительной интенсивной эксплуатации, при подключении редуктора или другого переходного устройства.

Значительно улучшить точность можно с применением простой методики:

  • устанавливают на вал шкив с закрепленным тросом;
  • поднимают на контрольную высоту (h) груз c массой m;
  • секундомером фиксируют время (t) на выполнение этой работы;
  • мультиметром измеряют напряжение (U) и силу тока (I) на клеммах источника питания и в разрыве цепи, соответственно.

Для нахождения КПД в физике формула выглядит следующим образом:

η = (m * h * g)/(I * U * t),

где g – это гравитационная постоянная (9,80665).

Эффективность любого силового агрегата определяют по соотношению полезной работы к расходованной энергии. Чтобы корректно определять класс техники, пользуются переводом в проценты. Следует подчеркнуть, что значение больше 100% обозначает ошибку в расчетах. Создатель подобного агрегата станет «властелином мира», так как изобретет вечный двигатель.

Які міркування дають підстави стверджувати, що позитивний заряд атома зосереджений у малому обєкті та вичначає масу атома? С какой скоростью упадёт на землю тело,брошенное вертикально вниз со скоростью 30м/с,с высоты 50м Помогитееее пожалуйста давление кирпичной стены длиной 15м высотой 3м у кирпича размерами 10-25-5 см Будь ласка зробить,що знаєте будь ласка мне очень срочно​ Давление кирпичной стены длиной 15м высотой 3м у кирпича размерами 10-25-5 см Свободно падающее тело достигает поверхности земли со скоростью 80м/с. С какой высоты оно падало? 1) в железную кастрюлю массой 7 кг налила воду массой 14 кг. Какое количество теплоты нужно передать кастрюле с водой для изменения их температуры от 10 до 100 °С? 2) Стальная деталька массой 6 кг нагрелась от 24 до 45 °С. Какое количество теплоты было израсходовано? 3) Воздух, заполняющий объем 0,7 л в цилиндре с легким поршнем, нагрели от 0 до 49 °С при постоянном атмосферном давлении. Какое количество теплоты получил воздух? Зная свою массу и площадь ботинка,вычислите,какое давление вы производите при ходьбе и стоя на месте.Указание.Площадь опоры ботинка определите следующ им образом.Поставте на лист клетчатой бумаги и обведите контур той части подошвы,на которую опираеться нога.Сосчитайте число полных квадратиков,попавших внутрь контура,и прибавте к нему половину числа неполных квадратиков,через которые прошла линия контура.Полученное число умножте на площадь одного кводратика(площадь квадратика 1/4см(в квадрате))и найдитеплощадь подошвы! . вес-60 кг .полных 600 не полных — 51 Помогите плеззз по технической механике Помогите пожалуй 10 вариант физика

Допустим, мы отдыхаем на даче, и нам нужно принести из колодца воды. Мы опускаем в него ведро, зачерпываем воду и начинаем поднимать. Не забыли, какова наша цель? Правильно: набрать воды. Но взгляните: мы поднимаем не только воду, но и само ведро, а также тяжёлую цепь, на которой оно висит. Это символизирует двухцветная стрелка: вес поднимаемого нами груза складывается из веса воды и веса ведра и цепи.

Рассматривая ситуацию качественно, мы скажем: наряду с полезной работой по подъёму воды мы совершаем и другую работу – подъём ведра и цепи. Разумеется, без цепи и ведра мы не смогли бы набрать воды, однако, с точки зрения конечной цели, их вес «вредит» нам. Если бы этот вес был бы меньше, то и полная совершённая работа тоже была бы меньше (при той же полезной).

Теперь перейдём к количественному изучению этих работ и введём физическую величину, называемую коэффициентом полезного действия.

Задача. Яблоки, отобранные для переработки, грузчик высыпает из корзин в грузовик. Масса пустой корзины 2 кг, а яблок в ней – 18 кг. Чему равна доля полезной работы грузчика от его полной работы?

Решение. Полной работой является перемещение яблок в корзинах. Эта работа складывается из подъёма яблок и подъёма корзин. Важно: поднятие яблок – полезная работа, а поднятие корзин – «бесполезная», потому что цель работы грузчика – переместить только яблоки.

  1. По ходу достижения главной цели (достать воду) мы …
  2. Что показывает стрелка из двух половинок на рисунке?
  3. Если бы вес ведра и цепи был меньше, то …
  4. И при этом полезная работа была бы …
  5. На примере задачи с погрузкой яблок мы …
  6. В итоге нас интересует не полезная или полная работа, а …
  7. Полная работа грузчика в задаче – это …
  8. Полная работа грузчика в задаче состоит …
  9. Полезной работой грузчика является …
  10. Поднятие самих корзин – не полезная работа, поскольку …

Механическая работа

Работа

A , W {\displaystyle A,W}

Размерность

L2MT−2

Единицы измерения

СИ

Дж

СГС

эрг

Примечания

скалярная величина

Механическая работа

A = F ⋅ S = F ⋅ S ⋅ cos ⁡ φ {\displaystyle A={\mathbf {F}}\cdot {\mathbf {S}}=F\cdot S\cdot \cos \varphi } Работа силы

Ключевые статьи

Работа в физике

Механическая работа Закон сохранения энергии Термодинамическая работа Первое начало термодинамики

Размерность

Известные учёные

См. также: Портал:Физика

Механическая работа — это физическая величина — скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил) и от перемещения тела (системы тел).

> Используемые обозначения

Работа обычно обозначается буквой A (от нем. Arbeit — работа, труд) или буквой W (от англ. work — работа, труд).

Определение

Работа силы, приложенной к материальной точке

Суммарная работа по перемещению одной материальной точки, совершаемая несколькими силами, приложенными к этой точке, определяется как работа равнодействующей этих сил (их векторной суммой). Поэтому дальше будем говорить об одной силе, приложенной к материальной точке.

При прямолинейном движении материальной точки и постоянном значении приложенной к ней силы, работа (этой силы) равна произведению проекции вектора силы на направление движения и длины вектора перемещения, совершённого точкой:

A = F s s = F s c o s ( F , s ) = F → ⋅ s → {\displaystyle A=F_{s}s=Fs\ \mathrm {cos} (F,s)={\vec {F}}\cdot {\vec {s}}}

Здесь точкой обозначено скалярное произведение, s → {\displaystyle {\vec {s}}} — вектор перемещения; подразумевается, что действующая сила F → {\displaystyle {\vec {F}}} постоянна в течение времени, за которое вычисляется работа.

В общем случае, когда сила не постоянна, а движение не прямолинейно, работа вычисляется как криволинейный интеграл второго рода по траектории точки:

A = ∫ F → ⋅ d s → . {\displaystyle A=\int {\vec {F}}\cdot {\vec {ds}}.}

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из последовательных перемещений d s → , {\displaystyle {\vec {ds}},} если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат, интеграл определяется следующим образом:

A = ∫ r → 0 r → 1 F → ( r → ) ⋅ d r → {\displaystyle A=\int \limits _{{\vec {r}}_{0}}^{{\vec {r}}_{1}}{\vec {F}}\left({\vec {r}}\right)\cdot {\vec {dr}}} ,

где r → 0 {\displaystyle {\vec {r}}_{0}} и r → 1 {\displaystyle {\vec {r}}_{1}} — радиус-векторы начального и конечного положения тела соответственно.

  • Следствие. Если направление приложенной силы ортогонально перемещению тела или перемещение равно нулю, то работа (этой силы) равна нулю.

Работа сил, приложенных к системе материальных точек

Работа сил по перемещению системы материальных точек определяется как сумма работ этих сил по перемещению каждой точки (работы, совершённые над каждой точкой системы, суммируются в работу этих сил над системой).

Даже если тело не является системой дискретных точек, его можно разбить (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых можно считать материальной точкой, и вычислить работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.

  • Эти определения могут быть использованы как для вычисления работы конкретной силы или класса сил, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Кинетическая энергия

Кинетическая энергия вводится в механике в прямой связи с понятием работы.

Схема рассуждений такова: 1) попробуем записать работу, совершаемую всеми силами, действующими на материальную точку и, пользуясь вторым законом Ньютона (позволяющим выразить силу через ускорение), попытаемся выразить ответ только через кинематические величины, 2) убедившись, что это удалось, и что этот ответ зависит только от начального и конечного состояния движения, введём новую физическую величину, через которую эта работа будет просто выражаться (это и будет кинетическая энергия).

Если A t o t a l {\displaystyle A_{total}} — полная работа, совершённая над частицей, определяемая как сумма работ, совершенных приложенными к частице силами, то она выражается как:

A t o t a l = Δ ( m v 2 2 ) = Δ E k , {\displaystyle A_{total}=\Delta \left({\frac {mv^{2}}{2}}\right)=\Delta E_{k},}

где E k {\displaystyle E_{k}} называется кинетической энергией. Для материальной точки кинетическая энергия определяется как половина произведения массы этой точки на квадрат её скорости и выражается как:

E k = 1 2 m v 2 . {\displaystyle E_{k}={\frac {1}{2}}mv^{2}.}

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Потенциальная энергия

Сила называется потенциальной, если существует скалярная функция координат, известная как потенциальная энергия и обозначаемая E p {\displaystyle E_{p}} , такая, что

F → = − ∇ E p . {\displaystyle {\vec {F}}=-\nabla E_{p}.}

Если все силы, действующие на частицу, консервативны, и E p {\displaystyle E_{p}} является полной потенциальной энергией, полученной суммированием потенциальных энергий, соответствующих каждой силе, тогда:

Этот результат известен как закон сохранения механической энергии и утверждает, что полная механическая энергия в замкнутой системе, в которой действуют консервативные силы,

∑ E = E k + E p {\displaystyle \sum E=E_{k}+E_{p}}

является постоянной во времени. Этот закон широко используется при решении задач классической механики.

Работа в термодинамике

Основная статья: Термодинамическая работа

В термодинамике работа, совершённая газом при расширении, рассчитывается как интеграл давления по объёму:

A 1 → 2 = ∫ V 1 V 2 P d V . {\displaystyle A_{1\rightarrow 2}=\int \limits _{V_{1}}^{V_{2}}PdV.}

Работа, совершённая над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объёма, но и к любому процессу (изображаемому любой кривой в плоскости PV), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула прямо связана с механической работой. Действительно, попробуем написать механическую работу при расширении сосуда, учитывая, что сила давления газа будет направлена перпендикулярно каждой элементарной площадке, равна произведению давления P на площадь dS площадки, и тогда работа, совершаемая газом для смещения h одной такой элементарной площадки будет

d A = P d S h . {\displaystyle dA=PdSh.}

Видно, что это и есть произведение давления на приращение объёма вблизи данной элементарной площадкой. А просуммировав по всем dS, получим конечный результат, где будет уже полное приращение объёма, как и в главной формуле раздела.

Работа силы в теоретической механике

Рассмотрим несколько детальнее, чем это было сделано выше, построение определения энергии как риманова интеграла.

Пусть материальная точка M {\displaystyle M} движется по непрерывно дифференцируемой кривой G = { r = r ( s ) } {\displaystyle G=\{r=r(s)\}} , где s — переменная длина дуги, 0 ≤ s ≤ S {\displaystyle 0\leq s\leq S} , и на неё действует сила F ( s ) {\displaystyle F(s)} , направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F ( s ) {\displaystyle F(s)} проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее). Величина F ( ξ i ) △ s i , △ s i = s i − s i − 1 , i = 1 , 2 , . . . , i τ {\displaystyle F(\xi _{i})\triangle s_{i},\triangle s_{i}=s_{i}-s_{i-1},i=1,2,…,i_{\tau }} , называется элементарной работой силы F {\displaystyle F} на участке G i {\displaystyle G_{i}} и принимается за приближённое значение работы, которую производит сила F {\displaystyle F} , воздействующая на материальную точку, когда последняя проходит кривую G i {\displaystyle G_{i}} . Сумма всех элементарных работ ∑ i = 1 i τ F ( ξ i ) △ s i {\displaystyle \sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} является интегральной суммой Римана функции F ( s ) {\displaystyle F(s)} .

В соответствии с определением интеграла Римана, можем дать определение работе:

Предел, к которому стремится сумма ∑ i = 1 i τ F ( ξ i ) △ s i {\displaystyle \sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} всех элементарных работ, когда мелкость | τ | {\displaystyle |\tau |} разбиения τ {\displaystyle \tau } стремится к нулю, называется работой силы F {\displaystyle F} вдоль кривой G {\displaystyle G} .

Таким образом, если обозначить эту работу буквой W {\displaystyle W} , то, в силу данного определения,

W = lim | τ | → 0 ∑ i = 1 i τ F ( ξ i ) △ s i {\displaystyle W=\lim _{|\tau |\rightarrow 0}\sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} ,

следовательно,

W = ∫ 0 s F ( s ) d s {\displaystyle W=\int \limits _{0}^{s}F(s)ds} (1).

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t {\displaystyle t} (например, времени) и если величина пройденного пути s = s ( t ) {\displaystyle s=s(t)} , a ≤ t ≤ b {\displaystyle a\leq t\leq b} является непрерывно дифференцируемой функцией, то из формулы (1) получим

W = ∫ a b F s ′ ( t ) d t . {\displaystyle W=\int \limits _{a}^{b}Fs'(t)dt.}

Размерность и единицы

Единицей измерения работы в Международной системе единиц (СИ) является джоуль, в СГС — эрг

1 Дж = 1 кг·м²/с² = 1 Н·м 1 эрг = 1 г·см²/с² = 1 дин·см 1 эрг = 10−7 Дж > См. также

  • Закон сохранения энергии
  • Теорема о кинетической энергии системы
  • Механические приложения криволинейных интегралов

Примечания

  1. Тарг С. М. Работа силы // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 193-194. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. Это делается исходя из того, что можно разбить суммарное конечное перемещение на маленькие последовательные перемещения d s → {\displaystyle {\vec {ds}}} , на каждом из которых сила будет почти постоянной, а значит можно будет воспользоваться определением для постоянной силы, введенным выше. Затем работы на всех этих перемещениях d s → {\displaystyle {\vec {ds}}} суммируется, что и дает в результате интеграл.
  3. Как это очень часто бывает. Например, в случае кулоновского поля, растягивающейся пружины, силы тяготения планеты итд итд.
  4. По сути через предыдущий, поскольку здесь F → ( t ) = F → ( r → ( t ) ) {\displaystyle {\vec {F}}(t)={\vec {F}}({\vec {r}}(t))} ; вектор же малого перемещения d s → {\displaystyle {\vec {ds}}} совпадает с d r → {\displaystyle d{\vec {r}}} .
  5. Тарг С. М. Кинетическая энергия // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  6. Работа, совершаемая газом при его сжатии, очевидно отрицательна, но вычисляется по той же формуле. Работа, совершаемая газом (или над газом) без его расширения или сжатия (например, в процессе перемешивания мешалкой), в принципе может быть выражена подобной формулой, но всё же не прямо этой, так как она требует обобщения: дело в том, что в формуле ∫ P d V {\displaystyle \int PdV} давление подразумевается одинаковым по всему объему (что часто выполняется в термодинамике, поскольку речь там часто идет о процессах, близких к равновесным), что и приводит к наиболее простой формуле (в случае же вращающейся мешалки, например, давление будет разным на передней и задней стороне лопасти, что приведет к необходимому усложнению формулы, если мы захотим применить её к такому случаю; эти соображения относятся и ко всем другим неравновесным случаям, когда давление неодинаково в разных частях системы).

Литература

  • История механики с древнейших времен до конца XVIII в. В 2 т. М.: Наука, 1972.
  • Кирпичёв В. Л. Беседы о механике. М.-Л.: Гостехиздат, 1950.
  • Льоцци М. История физики. М.: Мир, 1970.
  • Мах Э. Принцип сохранения работы: История и корень его. СПб., 1909.
  • Мах Э. Механика. Историко-критический очерк её развития. Ижевск: РХД, 2000.
  • Тюлина И. А. История и методология механики. М.: Изд-во МГУ, 1979.

Для улучшения этой статьи по физике желательно:

  • Исправить статью согласно стилистическим правилам Википедии.
  • Проставив сноски, внести более точные указания на источники.

Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.

Как найти полезную работу?

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *