Гидравлика что такое

Гидравлические машины

Смотреть что такое «Гидравлические машины» в других словарях:

  • гидравлические машины — сущ., кол во синонимов: 1 • гидмаш (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

  • Гидравлические механизмы — Гидравлические механизмы аппараты и инструменты, использующие в своей работе кинетическую или потенциальную энергию жидкости. К гидравлическим механизмам относят гидравлические машины. В таких механизмах сила высокого давления… … Википедия

  • Гидравлические жидкости — Гидравлические жидкости жидкости, применяемые в машинах и механизмах для передачи усилий (см. Гидравлическая передача, Гидравлический двигатель, Гидродинамическая передача и Гидропередача объёмная). Гидравлические жидкости должны обладать… … Википедия

  • Гидравлические транспортирующие установки — машины непрерывного транспорта, предназначенные для транспортирования насыпных грузов в струе жидкости. В качестве транспортирующей жидкости как правило используется вода. Смесь воды с насыпным грузом называется пульпой или гидросмесью, а… … Википедия

  • МАШИНЫ РУЛЕВЫЕ — для управления современными быстроходными судами приходится к румпелю руля прикладывать весьма значительные усилия, не говоря уже о том, что в связи с этой же причиной появилось новое требование скорости перекладки руля. Все это привело к… … Морской словарь

  • Гидравлические и пневматические схемы — Простейшая принципиальная гидравлическая схема гидропривода (код Г3) Гидравлическая (пневматическая) схема это технический документ, содержащий в виде условных графических изображений или обозначений информацию о строении изделия, его… … Википедия

  • Машины и оборудование — К подразделу Машины и оборудование относятся устройства, преобразующие энергию, материалы и информацию. В зависимости от основного (преобладающего) назначения машины и оборудование делятся на энергетические (силовые), рабочие и информационные. К… … Словарь: бухгалтерский учет, налоги, хозяйственное право

  • Классификаторы гидравлические — – машины и аппараты, оборудованные для разделения минеральных материалов в зависимости от скорости падения их зерен в воде. [Словарь основных терминов, необходимых при проектировании, строительстве и эксплуатации автомобильных дорог. Москва … Энциклопедия терминов, определений и пояснений строительных материалов

  • ГОСТ Р ИСО 6015-2010: Машины землеройные. Гидравлические экскаваторы и экскаваторы-погрузчики. Методы измерения усилий на рабочих органах — Терминология ГОСТ Р ИСО 6015 2010: Машины землеройные. Гидравлические экскаваторы и экскаваторы погрузчики. Методы измерения усилий на рабочих органах оригинал документа: 3.17 гидравлическое ограничение (hydraulic limit): Условие, при котором… … Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 27721-88: Машины землеройные. Погрузчики. Термины, определения и техническая характеристика для коммерческой документации — Терминология ГОСТ 27721 88: Машины землеройные. Погрузчики. Термины, определения и техническая характеристика для коммерческой документации оригинал документа: 4.2. Базовая машина погрузчик, соответствующий технической документации изготовителя.… … Словарь-справочник терминов нормативно-технической документации

Гидравлический тормозной привод

Гидравлический тормозной привод автомобилей является гидростатическим, т. е. таким, в котором передача энергии осуществляется давлением жидкости. Принцип действия гидростатического привода основан на свойстве несжимаемости жидкости, находящейся в покое, передавать создаваемое в любой точке давление во все другие точки при замкнутом объеме.

Принципиальная схема рабочей тормозной системы автомобиля:
1 — тормозной диск;
2 — скоба тормозного механизма передних колес;
3 — передний контур;
4 — главный тормозной цилиндр;
5 — бачок с датчиком аварийного падения уровня тормозной жидкости;
6 — вакуумный усилитель;
7 — толкатель;
8 — педаль тормоза;
9 — выключатель света торможения;
10 — тормозные колодки задних колес;
11 — тормозной цилиндр задних колес;
12 — задний контур;
13 — кожух полуоси заднего моста;
14 — нагрузочная пружина;
15 — регулятор давления;
16 — задние тросы;
17 — уравнитель;
18 — передний (центральный) трос;
19 — рычаг стояночного тормоза;
20 — сигнализатор аварийного падения уровня тормозной жидкости;
21 — выключатель сигнализатора стояночного тормоза;
22 — тормозная колодка передних колес
Принципиальная схема гидропривода тормозов показана на рисунке. Привод состоит из главного тормозного цилиндра, поршень которого связан с тормозной педалью, колесных цилиндров тормозных механизмов передних и задних колес, трубопроводов и шлангов, соединяющих все цилиндры, педали управления и усилителя приводного усилия.
Трубопроводы, внутренние полости главного тормозного и всех колесных цилиндров заполнены тормозной жидкостью. Показанные на рисунке регулятор тормозных сил и модулятор антиблокировочной системы, при их установке на автомобиле, также входят в состав гидропривода.
При нажатии педали поршень главного тормозного цилиндра вытесняет жидкость в трубопроводы и колесные цилиндры. В колесных цилиндрах тормозная жидкость заставляет переместиться все поршни, вследствие чего колодки тормозных механизмов прижимаются к барабанам (или дискам). Когда зазоры между колодками и барабанами (дисками) будут выбраны, вытеснение жидкости из главного тормозного цилиндра в колесные станет невозможным. При дальнейшем увеличении силы нажатия на педаль в приводе увеличивается давление жидкости и начинается одновременное торможение всех колес.
Чем большая сила приложена к педали, тем выше давление, создаваемое поршнем главного тормозного цилиндра на жидкость и тем большая сила воздействует через каждый поршень колесного цилиндра на колодку тормозного механизма. Таким образом, одновременное срабатывание всех тормозов и постоянное соотношение между силой на тормозной педали и приводными силами тормозов обеспечиваются самим принципом работы гидропривода. У современных приводов давление жидкости при экстренном торможении может достигать 10–15 МПа.
При отпускании тормозной педали она под действием возвратной пружины перемещается в исходное положение. В исходное положение своей пружиной возвращается также поршень главного тормозного цилиндра, стяжные пружины механизмов отводят колодки от барабанов (дисков). Тормозная жидкость из колесных цилиндров по трубопроводам вытесняется в главный тормозной цилиндр.
Преимуществами гидравлического привода являются быстрота срабатывания (вследствие несжимаемости жидкости и большой жесткости трубопроводов), высокий КПД, т. к. потери энергии связаны в основном с перемещением маловязкой жидкости из одного объема в другой, простота конструкции, небольшие масса и размеры вследствие большого приводного давления, удобство компоновки аппаратов привода и трубопроводов; возможность получения желаемого распределения тормозных усилий между осями автомобиля за счет различных диаметров поршней колесных цилиндров.
Недостатками гидропривода являются: потребность в специальной тормозной жидкости с высокой температурой кипения и низкой температурой загустевания; возможность выхода из строя при разгерметизации вследствие утечки жидкости при повреждении, или выхода из строя при попадании в привод воздуха (образование паровых пробок); значительное снижение КПД при низких температурах (ниже минус 30 °С); трудность использования на автопоездах для непосредственного управления тормозами прицепа.
Для использования в гидроприводах выпускаются специальные жидкости, называемые тормозными. Тормозные жидкости изготавливают на разных основах, например спиртовой, гликолевой или масляной. Их нельзя смешивать между собой из-за ухудшения свойств и образования хлопьев. Во избежание разрушения резиновых деталей тормозные жидкости, полученные из нефтепродуктов, допускается применять только в гидроприводах, в которых уплотнения и шланги выполнены из маслостойкой резины.
При использовании гидропривода он всегда выполняется двухконтурным, причем работоспособность одного контура не зависит от состояния второго. При такой схеме при единичной неисправности выходит из строя не весь привод, а лишь неисправный контур. Исправный контур играет роль запасной тормозной системы, с помощью которой автомобиль останавливается.

Способы разделения тормозного привода на два (1 и 2) независимых контура
Четыре тормозных механизма и их колесные цилиндры могут быть разнесены на два независимых контура различными способами, как показано на рисунке.
На схеме (рис. 5а) в один контур объединены первая секция главного цилиндра и колесные цилиндры передних тормозов. Второй контур образован второй секцией и цилиндрами задних тормозов. Такая схема с осевым разделением контуров применяется, например, на автомобилях УАЗ-3160, ГАЗ-3307. Более эффективной считается диагональная схема разделения контуров (рис. б), при которой в один контур объединяют колесные цилиндры правого переднего и левого заднего тормозов, а во второй контур — колесные цилиндры двух других тормозных механизмов (ВАЗ-2112). При такой схеме в случае неисправности всегда можно затормозить одно переднее и одно заднее колесо.
В остальных схемах, представленных на рис. 6.15, после отказа сохраняют работоспособность три или все четыре тормозных механизма, что еще больше повышает эффективность запасной системы. Так, гидропривод тормозов автомобиля Москвич-21412 (рис. в) выполнен с использованием двухпоршневого суппорта дискового механизма на передних колесах с большим и малым поршнями. Как видно из схемы, при отказе одного из контуров исправный контур запасной системы действует либо только на большие поршни суппорта переднего тормоза, либо на задние цилиндры и малые поршни переднего тормоза.
В схеме (рис. г) исправным всегда остается один из контуров, объединяющий колесные цилиндры двух передних тормозов и одного заднего (автомобиль Volvo). Наконец, на рис. 6.15д показана схема с полным дублированием (ЗИЛ-41045), в которой любой из контуров осуществляет торможение всех колес. В любой схеме обязательным является наличие двух независимых главных тормозных цилиндров. Конструктивно чаще всего это бывает сдвоенный главный цилиндр тандемного типа, с последовательно расположенными независимыми цилиндрами в одном корпусе и приводом от педали одним штоком. Но на некоторых автомобилях применяют два обычных главных цилиндра, установленных параллельно с приводом от педали через уравнительный рычаг и два штока.

Гидравлические машины.

Гидравлические машины в принципе своей работы основываются на применении закона Паскаля, который говорит, что давление, производимое на жидкость, передается внутри неё во все стороны с одинаковой силой.

Что же такое гидравлический агрегат? Гидравлический — значит работающий за счет давления или движения жидкости, например воды.

В этой статье мы собрали для Вас принцип действия и основные схемы наиболее часто применяемых гидростатических машин.

Гидравлический пресс применяется для получения больших сжимающих усилий, которые необходимы, например, для деформации металлов при обработке давлением (прессование, ковка, штамповка), при испытании различных материалов, уплотнении рыхлых материалов и т.д.

Схема и принцип действия

Самая простая схема гидравлической машины, такой как гидравлический пресс состоит из двух цилиндров А и В (малого и большого диаметра), соединенных между собой трубкой С. Такая схема похожа на работу сообщающихся сосудов.

В малом цилиндре расположен малый поршень гидравлической машины D, соединенный с рычагом ОКМ, имеющим неподвижную шарнирную опору в точке О, а в большом цилиндре – большой поршень гидравлической машины (плунжер) Е, составляющий одно целое с платформой F, на котором расположено прессуемое тело G.

Рычаг приводится в действие вручную или при помощи специального двигателя. При этом поршень D начинает двигаться вниз и оказывать на находящуюся под ним жидкость давление, которое передается на поршень Е и заставляет его вместе со столом двигаться до тех пор, пока тело G не войдет в соприкосновение с неподвижной плитой Н.

При дальнейшем подъеме стола начинается процесс прессования (сжатия) тела G.

Если данное устройство служит не для прессования, а только для поднятия груза, т.е. представляет собой так называемый гидравлический подъемник, то неподвижная плита Н в этом случае оказывается лишней и из конструкции исключается.

Вместе с указанными на схеме частями гидравлический пресс снабжается всасывающим и нагнетательным клапанами, регулирующими работу пресса, и клапаном, предохраняющим его от разрыва при чрезмерном возрастании давления (на схеме клапаны не показаны).

Сила давления, КПД и формула машины

Установим основные соотношения, определяющие работу пресса. Пусть усилие, действующее на конец М рычага ОКМ, будет называться Q, а плечи рычага ОК = a, КМ = b. Тогда, рассматривая равновесие рычага и составляя уравнение моментов относительно его центра вращения О выводим уравнение

Q*(a+b) = P1*a,

Находим силу передаваемую на поршень D малого цилиндра

P1 = Q*(a+b) / a

и создаваемое в жидкости добавочное гидростатическое давление

ρ= P1 / (πd12 / 4)

где d1 – диаметр малого цилиндра.

Давление ρ передается на поршень Е большого цилиндра, в результате чего полная сила давления на этот поршень, обусловленная силой Q, будет

P2 = ρ *(πd22 / 4) = Q (d2 / d1)2 * (a+b) / a,

где d2 – диаметр большого цилиндра.

Из этого выражения видно, что сила P2 может быть получена сколько угодно большой путем выбора соответствующих размеров цилиндров и плеч движущего рычага.

На самом деле действительная сила P2, передаваемая на стол и осуществляющая процесс прессования, оказывается несколько меньше из-за неизбежных потерь энергии на преодоление трения в движущихся частях пресса и утечек жидкости через различные неплотности и зазоры.

Эти потери учитываются введением в формулу коэффициента полезного действия – КПД. Таким образом формула гидравлической машины

P1 = КПД * Q (d2 / d1)2 * (a+b) / a,

Практически этот коэффициент имеет значение от 0,75 до 0,85.

В современных гидравлических прессах можно получить очень большие давления (до 25 000 т.). В таких конструкциях малый цилиндр выполняют обычно в виде поршневого насоса высокого давления, подающего рабочую жидкость (воду или масло) в большой цилиндр (собственно пресс), часто с добавлением в схему специального устройства – гидравлического аккумулятора, выравнивающего работу насоса.

Гидравлический аккумулятор

Как показывает название – гидравлический аккумулятор служит для аккумулирования, т.е. накапливания, собирания энергии. Он применяется на практике в тех случаях, когда необходимо выполнить кратковременную работу, требующую значительных механических усилий, например, поднять большую тяжесть, открыть и закрыть ворота шлюзов и т.п.

Наиболее широкое применение гидравлические аккумуляторы получили при работе гидравлических прессов, используемые здесь как установки, накапливающие жидкость в период холостого хода пресса и отдающие ее при рабочем ходе, когда подача насосов оказывается недостаточной.

Гидравлический аккумулятор состоит из цилиндра А, в котором помещен плунжер В, присоединенный своей верхней частью к платформе С, несущей груз большого веса. В аккумулятор по трубе D насосом нагнетается жидкость (вода или масло), которая поднимает вверх плунжер с грузом. При достижении крайнего верхнего положения насос автоматически выключается.

Обозначим вес плунжера с грузом через G, а его полную высоту подъема через Н. Тогда энергия, запасенная аккумулятором при полном подъеме плунжера, будет равна G*H, а создаваемое им в жидкости гидростатическое давление

P = G / F,

где F – площадь сечения плунжера

Под таким постоянным давлением находящаяся в аккумуляторе жидкость подводится по трубе Е к гидравлическим машинам – например, прессовым машинам, обеспечивая тем самым их работу с постоянной нагрузкой.

Гидростатическое давление, создаваемой аккумулятором, будет тем больше, чем меньше площадь сечения плунжера.

Однако при чрезмерном уменьшении сечения плунжера последний может оказаться недостаточно прочным. Поэтому при необходимости получения очень больших давлений применяются так называемые дифференциальные аккумуляторы со ступенчатым поршнем.

В этом случае давление на жидкость, находящуюся в цилиндре А, передается через небольшую площадь кольцевого уступа ступенчатого поршня, пропущенного сквозь обе крышки цилиндра (верхнюю и нижнюю), и следовательно, сечение поршня может быть выбрано такого размера, при котором обеспечивается необходимая прочность.

Гидравлическая турбина

Гидравлические двигатели служат для преобразования гидравлической энергии потока жидкости в механическую энергию, получаемую на валу двигателя и используемую в дальнейшем для различных целей, в основном для привода рабочих машин.

Наиболее распространенным представителем этой группы является гидравлическая турбина. Гидравлические турбины обычно для устанавливаются на гидроэлектрических станциях, где они служат приводом электрических генераторов.

Энергия воды преобразуется в турбине в механическую энергию на валу. Вал приводит в движение ротор электрогенератора и механическая энергия превращается в электрическую.

Насос

В насосах, применяемых для подъема и перемещения жидкости по трубопроводам, происходит обратный процесс. Механическая энергия, подводимая к насосам от двигателей, приводящих насосы в действие, преобразуется в гидравлическую энергию жидкости.

На рисунке схематично изображены
А – турбинная установка
Б – насосная установка

Насосы это самые распространенная разновидность гидравлических машин. Они применяются во всех отраслях промышленности и сельского хозяйства.

Насосы используются в водоснабжении, отоплении, вентиляции, для работы котельной установки и во многих других областях техники.

Подробная схема работы насоса размещена в этой статье

Гидравлические машины весьма широко используются в настоящее время в нефтяной промышленности. Насосы применяются при транспортировке нефти и нефтепродуктов по трубопроводам, при бурении нефтяных скважин для подачи в них промывочных растворов и т.д.

Что такое гидравлика ?

Гидравлика — базовая теоретическая дисциплина для обширного круга прикладных наук, с помощью которых исследуются процессы, сопровождающие работу гидравлических машин, гидроприводов. С помощью основных уравнений гидравлики и разработанных ею методов исследования, решаются важные практические задачи, связанные с транспортом жидкостей и газов по трубопроводам, а также с транспортом твёрдых тел по трубам и другим руслам.

Гидравлика также решает важнейшие практические задачи, связанные с равновесием твёрдых тел в жидкостях и газах, т.е. изучает вопросы плавания тел. Широкое использование в практической деятельности человека различных гидравлических машин и механизмов ставят гидравлику в число важнейших дисциплин, обеспечивающих научно-технический прогресс.

Большой практический интерес к изучению механики жидкости вызван рядом объективных факторов. Во-первых, наличие в природе значительных запасов жидкостей, которые легко доступны человеку. Во-вторых, жидкие тела обладают рядом полезных свойств, делающих их удобными рабочими агентами в практической деятельности человека.

Немаловажным следует считать и тот фактор, что большинство жизненно важных химических реакций обмена протекают в жидкой фазе (чаще всего в водных растворах). История свидетельствует об успешном решении ряда практических задач с использованием жидкостей уже на самих ранних стадиях развития человека. Первым же научным трудом по гидравлике следует считать трактат Архимеда «О плавающих телах» (250 г. до н. э.).

Гидравлика — наука, изучающая законы равновесия (см. гидростатика) и движения (см. гидродинамика) капельных жидкостей и газов. Гидравлика, как прикладная наука, применяется для решения различных инженерных задач в области водоснабжения, водоотведения (канализации), при строительстве различных гидротехнических сооружений, а так же при конструировании различных устройств (насосов, компрессоров и т. п.).

Гидравлика широко использует теоретические положения механики и данные экспериментов. В прошлом гидравлика носила чисто экспериментальный и прикладной характер, в последнее время её теоретические основы получили значительное развитие, это способствовало сближению её с гидромеханикой.

Гидравлика решает многочисленные инженерные задачи, рассматривает многие вопросы гидрологии, в частности, законы движения речных потоков, транспорта ими наносов, льда и шуги, процессы формирования русла и т. д.

Этот комплекс вопросов объединяется речной гидравликой (динамикой русловых потоков), которую можно рассматривать как самостоятельный раздел гидравлики. По отношению к гидромеханике гидравлика выступает как инженерное направление, получающее решение многих задач о движении жидкости на основе сочетания эмпирических зависимостей, установленных опытным путем, с теоретическими выводами гидромеханики

>определение гидравлика

  • 2019

Что такое гидравлика:

Гидравлика — это область физики, которая изучает физические характеристики жидкостей в их жидком состоянии, будь то в состоянии покоя или в движении.

Также известный как Механика Жидкости, он отвечает за определение поведения и использования замкнутых или протекающих жидкостей в качестве способа работы в качестве систем передатчика.

Благодаря его исследованиям можно узнать законы, которые регулируют транспорт, преобразование энергии, регулирование и контроль жидкостей, действующих под воздействием таких переменных, как давление, расход, температура, вязкость и т. Д.

В этом смысле основной закон, лежащий в основе изучения гидравлики, заключается в том, что давление, оказываемое в любой точке на неподвижную жидкость (статическое), одинаково во всех направлениях и оказывает равные силы в равных областях.

Изучение гидравлики можно разделить на три части: гидростатическое, которое предназначено для понимания поведения покоящихся жидкостей, гидрокинетика, которое изучает движущиеся жидкости и гидродинамику, которое учитывает переменные, участвующие в потоке жидкостей, как силы тяжести, давления, тангенциального напряжения, вязкости, сжимаемости и др.

Гидравлика — это, прежде всего, очень прикладное исследование в области точных наук, таких как машиностроение, главным образом для построения систем, генерирующих энергию посредством движения воды, так называемой гидравлической энергии.

Гидравлическая мощность

Гидравлическая энергия, также известная как гидроэнергия или гидроэлектроэнергия, получается путем использования потенциальной и кинетической энергии водных течений в реках, морях или водопадах.

Считается источником возобновляемой и чистой энергии, она получается благодаря движению воды, которая перемещает турбины, существующие на гидроэлектростанциях, и преобразует эту силу в электрическую энергию.

Гидравлическое давление

Когда на точку жидкости оказывается давление, оно передается на все точки жидкости. Это принцип так называемого гидравлического давления или принцип Паскаля, где повышение давления, испытываемое жидким телом, передается как единое целое во все точки жидкости и на стенки контейнера, где она содержится.

Для расчета гидравлического давления используйте формулу:

где,

p — давление (Н / м² или Па — Паскаль)

F — сила (ньютон)

A — площадь (м²)

Принцип работы гидравлической тормозной системы автомобиля

Гидравлический тип тормозной системы используют на легковых автомобилях, внедорожниках, микроавтобусах, малогабаритных грузовиках и спецтехнике. Рабочая среда — тормозная жидкость, 93-98% которой составляют полигликоли и эфиры этих веществ. Остальные 2-7% — присадки, которые защищают жидкости от окисления, а детали и узлы от коррозии.

Схема гидравлической тормозной системы

Составные элементы гидравлической тормозной системы:

  • 1 — педаль тормоза;
  • 2 — центральный тормозной цилиндр;
  • 3 — резервуар с жидкостью;
  • 4 — вакуумный усилитель;
  • 5, 6 — транспортный трубопровод;
  • 7 — суппорт с рабочим гидроцилиндром;
  • 8 — тормозной барабан;
  • 9 — регулятор давления;
  • 10 — рычаг ручного тормоза;
  • 11 — центральный трос ручного тормоза;
  • 12 — боковые тросы ручного тормоза.

Чтобы понять работу тормозов, рассмотрим подробнее функционал каждого элемента.

Педаль тормоза

Это рычаг, задача которого — передача усилия от водителя на поршни главного цилиндра. Сила нажатия влияет на давление в системе и скорость остановки автомобиля. Чтобы уменьшить требуемое усилие, на современных автомобилях есть усилители тормозов.

Главный цилиндр и резервуар с жидкостью

Центральный тормозной цилиндр — узел гидравлического типа, состоящий из корпуса и четырех камер с поршнями. Камеры заполнены тормозной жидкостью. При нажатии на педаль, поршни увеличивают давление в камерах и усилие передается по трубопроводу на суппорты.

Над главным тормозным цилиндром расположен бачок с запасом “тормозухи”. Если тормозная система протекает, уровень жидкости в цилиндре уменьшается и в него начинает поступать жидкость из резервуара. Если уровень “тормозухи” упадет ниже критической отметки, на приборной панели начнет мигать индикатор ручного тормоза. Критический уровень жидкости чреват отказом тормозов.

Вакуумный усилитель

Тормозной усилитель стал популярный благодаря внедрению гидравлики в тормозные системы. Причина — чтобы остановить автомобиль с гидравлическими тормозами нужно больше усилий, чем в случае с пневматикой.

Вакуумный усилитель создает вакуум с помощью впускного коллектора. Полученная среда давит на вспомогательный поршень и в разы увеличивает давление. Усилитель облегчает торможение, делает вождение комфортным и легким.

Трубопровод

В гидравлических тормозах четыре магистрали — по одной на каждый суппорт. По трубопроводу жидкость из главного цилиндра попадает в усилитель, увеличивающий давление, а затем по отдельным контурам поставляется в суппорты. Металлические трубки с суппортами соединяют гибкие резиновые шланги, которые нужны, чтобы связать подвижные и неподвижные узлы.

Тормозной суппорт

Узел состоит из:

  • корпуса;
  • рабочего цилиндра с одним или несколькими поршнями;
  • штуцера прокачки;
  • посадочных мест колодок;
  • креплений.

Если узел подвижный, то поршни расположены с одной стороны от диска, а вторую колодку прижимает подвижная скоба, которая движется на направляющих. У неподвижного тормозного суппорта поршни расположены по обе стороны диска в цельном корпусе. Суппорта крепят к ступице или к поворотному кулаку.

Задний тормозной суппорт с системой ручного тормоза

Жидкость поступает в рабочий цилиндр суппорта и выдавливает поршни, прижимая колодки к диску и останавливая колесо. Если отпустить педаль, жидкость возвращается, а так как система герметичная, подтягивает и возвращает на место поршни с колодками.

Тормозные диски с колодками

Диск — элемент тормозного узла, которые крепится между ступицей и колесом. Диск отвечает за остановку колеса. Колодки — плоские детали, которые находятся на посадочных местах в суппорте по обе стороны диска. Колодки останавливают диск и колесо с помощью силы трения.

Регулятор давления

Регулятор давления или, как его называют в народе, “колдун” — это страхующий и регулирующий элемент, который стабилизирует автомобиль во время торможения. Принцип работы — когда водитель резко нажимает на педаль тормоза, регулятор давления не дает всем колесам автомобиля тормозить одновременно. Элемент передает усилие от главного тормозного цилиндра на задние тормозные узлы с небольшим опозданием.

Такой принцип торможения обеспечивает лучшую стабилизацию автомобиля. Если все четыре колеса затормозят одновременно, автомобиль с большой долей вероятности занесет. Регулятор давления не дает уйти в неконтролируемый занос даже при резкой остановке.

Ручной или стояночный тормоз

Ручной тормоз удерживает автомобиль во время остановки на неровной поверхности, например, если водитель остановился на склоне. Механизм ручника состоит из ручки, центрального, правого и левого тросиков, правого и левого рычагов ручного тормоза. Ручной тормоз обычно соединяют с задними тормозными узлами.

Когда водитель тянет за рычаг ручника, центральный тросик натягивает правый и левый тросики, которые крепятся к тормозным узлам. Если задние тормоза барабанные, то каждый тросик крепится к рычагу внутри барабана и придавливает колодки. Если тормоза дисковые, то рычаг крепится к валу ручного тормоза внутри поршня суппорта. Когда рычаг ручника в рабочем положении, вал выдвигается, нажимает на подвижную часть поршня и прижимает колодки к диску, блокируя задние колеса.

Это основные моменты, которые стоит знать о принципе работы гидравлической тормозной системы. Остальные нюансы и особенности функционирования гидравлических тормозов зависят от марки, модели и модификации автомобиля.

Гидравлическая машина – это специальное оборудование, в котором подаваемая из насоса жидкость передаёт свою механическую энергию турбинам (так называемые гидродвигатели). Есть другой вариант – это машина, которая придаёт протекающей через неё жидкости механическую энергию (проще говоря – насос).

Гидравлическая машина, берущая энергию из протекающей воды, состоит из:

  • электро-генератор;
  • турбина;
  • подающий аппарат или специальные каналы.

Насос является одним из самых распространённых агрегатов. Они применяются в сельском хозяйстве, строительстве, химической, металлообрабатывающей, текстильной и пищевой промышленностях.

Гидравлическими машинами называют агрегаты, которые могут перемещать различные виды жидкостей и газов, а также, вырабатывать энергию от текущей жидкости (гидродвигатели). Именно создание и перемещение потока жидкостей и есть главное назначение гидравлических машин.

Классификация гидравлических машин

Гидравлические машины классифицируют по принципу действия и внутреннему строению.

Главное разделение – насосы и гидравлические двигатели.

К насосам относятся такие группы:

  1. Объёмные – это агрегаты, рабочий процесс которых, происходит переменно. В рабочую ёмкость через входную трубу попадает жидкость. После заполнения камеры, входная труба перекрывается задвижкой и в камере нагнетается давление (поршень). Открывается выводящая труба и жидкость покидает ёмкость. Задвижка закрывается, а на входе наоборот открывается. Процесс повторяется
  2. Динамические – в этих агрегатах, рабочая часть насоса, взаимодействует с жидкостью в проточной части. Потоку придаётся дополнительная кинетическая энергия, за счёт лопастей, винтов или вихревого потока.

Гидравлические двигатели разделяются на:

  1. Активные – в этом случае, поток распределяется по нескольким каналам, через которые он с большой скоростью ударяет в определённые лопасти турбины.
  2. Реактивные – это агрегат, в котором колесо вырабатывающее энергию, находится в ёмкости с большим давление под водой.

Однако у гидравлических двигателей, большинство моделей можно использовать как насос. Следовательно, они могут разделяться на объёмные и динамические.

Принцип работы и устройство гидромашин

С развитием технологий, появляется все больше новых машин, используемых в различных отраслях промышленности.

Лопастные насосы

Этот тип гидромашин, получил огромное распространение в обеспечение населения водой. Эти насосы можно разделить на осевые и центробежные.

Если говорить о принципе действия центробежного насоса, то в этом случае жидкость будет двигаться от центра колеса к периферии под воздействием центробежных сил.

Из каких элементов состоит: основное колесо (рабочее) на котором располагаются лопасти, подвод воды и отвод, а также двигатель. Колесо состоит из двух круглых пластин, между которыми располагаются изогнутые лопасти и подвижная ось двигателя. Колесо вращается в противоположную сторону изгиба лопаток. Тем самым, двигатель с помощью него передаёт потоку механическую энергию.

Осевой насос подразумевает движение жидкости только вдоль подвижной оси, на которой могут располагаться несколько рабочих колёс с лопастями. Они расположены так, чтобы вода поднималась вокруг оси до нужно отметки. В некоторых моделях таких насосов, можно регулировать положение лопастей.

Поршневой насос

Принцип работы заключается в вытеснение жидкости находящийся в рабочей камере, с помощью подвижных элементов насоса. Рабочая камера представляет собой емкость, в которой есть вход и выход для жидкости. Подвижные элементы бывают трёх видов: диафрагма, плунжер и поршень.

Устройство поршневого насоса: шатун, кривошип, поршень, цилиндр (корпус в котором двигается вытесняющая поверхность), пружинные клапаны (впускной и выпускной), ёмкость для жидкости.

Именно поршневые модели являются самыми распространёнными из вытеснителей. В них может присутствовать один, два или несколько поршней.

Плунжерные варианты используются реже вследствие своей дороговизны (это связанно с высокой точностью изготовления движущихся элементов). Однако их преимуществом перед поршневыми, является возможность получения высокого давления.

Состоит плунжерный насос из: ведущий вал, кулачок, плунжер, корпус (цилиндр), пружина (плунжер двигается вперёд с помощью кулачка, а обратно под воздействием пружины).

Самый постой в изготовление, вследствие этого дешёвый вариант – Диафрагменный насос. Из-за простой конструкции, этот вариант не подходит для создания большого давления. Прочность диафрагмы не предназначена для высоких нагрузок. Он состоит из: шток, гибкая диафрагма, корпус, два клапана (впускной и выпускной).

Шестерные насосы

Это машины роторного типа. Они получили большую популярность среди нерегулируемых насосов. Такой агрегат состоит из: две одинаковые шестерни (зацепленные друг за друга), камера п-образной формы (в ней и находятся шестерни), разделитель.

Принцип работы: после запуска двигателя, из всасывающего отверстия, вода попадает в зону между зубьями. Дальнейшее вращение шестерней, приводит к передвижению жидкости в нагнетательную плоскость. В месте зацепления шестерен, жидкость вытесняется и под воздействием давления попадает к дальнейшим рабочим частям насоса.

Преимущества таких гидромашин:

  • простая конструкция;
  • низкая стоимость;
  • высокий показатель надёжности;
  • высокая частота вращения.

Недостатки:

  • фиксированный рабочий объём, без возможности регулирования;
  • конструкция не предназначена для работы с высоким давлением;
  • неравномерная подача жидкости, если брать в пример пластинчатые гидромашины.

Пластинчатые гидромашины

Это не то же самое, что и лопастные машины (динамический вид). Рабочими поверхностями здесь являются шиберы (пластины). Они относятся к объёмному виду. Подвижным элементом является ротор. Он совершает вращательные движения. А шиберы двигаются по возвратно-поступательной траектории внутри ротора.

Пластинчатые гидромашины подразделяются на две группы: однократные и двукратные. Первый вариант может быть регулируемым, второй нерегулируемый.

Состоят такие агрегаты из: шиберы с пружинами (от двух и более), рабочие камеры (условно разделяются пластинами), ротор.

Рабочий процесс: после запуска двигателя, ротор начинает движение. Шиберы под воздействием пружин, плотно соприкасаются со стенками статора и разделяют общую рабочую емкость на две герметичные камеры (если пластине две). Под воздействием всасывания, емкости заполняются жидкостью и в ходе вращения, передают её в выходное отверстие.

Преимущества пластинчатых гидромашин:

  • тихий рабочей процесс;
  • возможность регулировки агрегатов однократного действия.

Недостатки:

  • сложная конструкция;
  • создание низкого давления при работе;
  • нарушение качества работы при низких температурах.

Поворотный гидродвигатель

Особенностью таких агрегатов, является ограничение угла рабочего вала. Они широко применяются в создание рулевого управления сельскохозяйственных машин. Угол оборота, напрямую зависит от количества пластин. Если она одна, он будет составлять примерно 270 градусов, если две – 150, три – 70.

Чтобы регулировать работу вала, потребуется специальный гидрораспределитель. Этот вид агрегатов не подходит для работы с большим давлением жидкости.

Гидротурбины

В этих гидромашинах, механическая энергия протекающей жидкости, передаётся лопастям рабочего колеса. Самый масштабный и яркий пример использования гидротурбин, это гидроэлектростанции. Они разделяются на реактивные и активные.

Состоит такой агрегат из: рабочее колесо, подводящий аппарат или сопла (зависит от типа турбины).

По внутреннему строению их можно разделить на ковшовые, диагональные, осевые и радиально-осевые.

Предшественником гидротурбин, можно назвать водяное колесо, которое приводилось в движение с помощью мощного потока воды (их устанавливали на реках или больших ручьях).

Осевые турбины

Самые быстроходные из всех видов турбин. Рабочее колесо по форме напоминает вентилятор с большими лопастями, которые могут быть как фиксированными, так и подвижными. В таких турбинах обязательно устанавливается подающий аппарат. Он отвечает за КПД агрегата, а также в нужным момент полностью перекрывает подступ воды к лопастям. Также обязательным элементом, являются трубы для откачивания воды.

Поворотно-лопастные турбины

Осевой вид турбины, с изменяющими своё положение лопастями. Всего их в такой конструкции может быть 8 штук. Сама конструкция напоминает гребной винт. Изменение положения лопастей, даёт возможность сохранять высокий показатель КПД при уменьшении и незначительном увеличение силы напора. Если лопасти зафиксированы, этот вид будет называться пропеллерным. Он самый дешёвый и самый ограниченный в возможностях (может работать только в одной силе потока).

Самым редким вариантом поворотно-лопастных турбин, являются двухперовые. Их главное отличие от других видов, это разделение лопасти на два пера. Такие модели активно используют за границей.

Радиально-осевые турбины

Это самый старый и самый популярный вид. Его главной особенностью является простота конструкции и невысокая цена. На самых больших гидроэлектростанциях, установлены именно такие гидротурбины. Им принадлежит рекорд по выдаваемой мощности.

В этом виде турбин, жидкость поступает на рабочее колесо с наружной стороны. Проходя по радиусу, минуя множество каналов определённой формы, она достигает центра и заставляет ротор раскручиваться. Для того, чтобы жидкость поступала равномерно и правильно, колесо окружается спиральной камерой, за которой находится направляющий аппарат. Его лопасти располагаются под определёнными углами, для увеличения КПД турбины. Когда вода отдала свою механическую энергию рабочему колесу, она откачивается с помощью специальных труб.

Главным минусом этого вида турбин, являются фиксированные лопасти. Тем самым, радиально-осевая турбина может показать высокой значение КПД, только при определённых напорах. Если использовать Радиально-осевую турбину при напоре в 700 м, её размер должен быть огромен, вследствие чего, она сильно проигрывает ковшовым турбинам. Максимально допустимой силой напора, для достижения высокого показателя КПД, будет отметка в 300м.

Диагональные турбины

Этот вид вобрал в себя лучшие качества двух предыдущих. Диагональные турбины, являются новой разработкой, по сравнению с другими. Главной особенностью этого вида, является гол наклона лопастей (30-60 градусов). И в это же время, лопасти можно регулировать. Вследствие этого, диагональные турбины подходят для обширного диапазона мощностей потока, сохраняя высокий показатель КПД.

Однако такая универсальность и производительность дорого обходится. Это связанно со сложностью конструкции.

Есть диагональные турбины с фиксированными лопастями. Они распространены на небольших ГЭС.

Ковшовые гидротурбины

Этот вид предназначен для работы с большими напорами. Ковшовые турбины относятся к активному типу в отличие от остальных. Рабочее колесо приводится в действие отдельными струями воды, попадающими на ковши колеса. Сами струи формируются с помощью направленных отверстий или сопл. Их может быть до шести штук. Рабочее колесо состоит из диска, с закреплёнными на нём ковшами.

Ковшовые гидротурбины разделяются на вертикальные и горизонтальные. Второй вариант используется на средних гидроэлектростанциях.

Где используется

Если говорить про простые варианты гидромашин (в которых давление передаётся при помощи жидкости), они используются в таких приспособлениях как домкраты, прессы, подъёмники. Следовательно, гидромашины используются в строительстве и машиностроение. Это так называемые гидроприводы, которые используются в различных подвижных частях строительных машин (ковши, буры, манипуляторы).

Если сравнить гидропривод с его механическим аналогом, у первого можно выделить такие преимущества:

  1. Высокая мощность передаваемая на одну единицу веса элемента.
  2. Скорость работы. Запуск, реверс и полная остановка выигрывают в скорости выполнения у механических и электрических приводов.
  3. Надёжное предохранение от перегрузов всей системы.
  4. Возможность установить на гидропривод любое оборудование (ковш, дисковая пила, отбойный молоток и многое другое).

Однако когда речь идёт об использование гидропривода на больших расстояниях, он сильно уступает аналогам в КПД.

Насосы применяются в соответствие с их конструкциями. Центробежные насосы получили своё распространение в работе теплоэлектростанций, системах очистки сточных вод, химической и пищевой промышленности. Также они используются для перемещения сжиженных газов, реагентов и нефтепродуктов.

Возвратно-поступательные насосы, являются самым старейшим видом. Ещё в древности они получили своё распространение в водоснабжение. Сейчас они используются в тех же целях, плюс для перекачки взрывоопасных жидкостей, пищевой промышленности (перемещение молочной продукции внутри заводов), а также в системах подачи топлива для ДВС.

Шестерные насосы могут работать только с невысоким уровнем давления. Их используют в сельскохозяйственной промышленности, коммунальных отраслях, перекачке различных видов топлива (бензин, нефть, дизель, различные добавки и присадки, мазут). В химической промышленности их применяют для перемещения кислот, спиртов, растворителей и щелочей.

В последние годы, гидравлические машины получили широкое распространение в создание тренажёров для занятий спортом.

Гидротурбины используются на ГЭС. Однако только в соответствие с силой напора:

Виды гидротурбин Максимальная сила напора Н, м Максимальная мощность кВт Максимальный диаметр турбины м
Реактивные:
Осевые трубчатые или капсюльные 20 50 8
Вертикальные поворотно-лопастные 80 250 10,5
Пропеллерные 80 150 9
Радиально-осевые 700 800 10
Двухперовые 100 250 8
Диагональные 200 300 8
Обратимые:
Радиально-осевые одноступенчатые 600 450 9,5
Осевые 15 30 8
Диагональные 100 300 7,5
Активные:
Сфиндекс 1500
Ковшовые 2000 350 7,5
Двукратные 100
Наклонно-струйные 400 50 4

Гидравлика автомобиля

На автомобиле гидравлика служит для выполнения перемещений, которые требуют больших усилий. С помощью гидравлических цилиндров происходит торможение или перемещение навесного оборудования автомобиля. В гидравлической системе автомобиля тормозная жидкость или масло через систему золотников, кранов и маслопроводов передает небольшое перемещение педали или рычага с большим усилием и с большим перемещением на тормозные колодки, рулевую рейку или другие исполнительные механизмы.

Основными исполнительными механизмами в гидравлике автомобиля являются гидроцилиндры. Подробнее и профессиональнее о их конструкциях и моделях рассказывает сайт http://www.gidrocylindr.ru/. Основной массе автомобилистовмногие технические нюансы конструкций не важны, им важнее, что можно заказать гидроцилинд онлайн. Такая необходимость у автомобилистов появляется достаточно часто из-за того, что гидравлика автомобиля представляет собой очень сложное техническое решение. Как все сложное, она часто выходит со строя. Отказ гидравлики автомобиля неизбежно приводит к невозможности его эксплуатации. А это – простой и экономические потери. Поэтому, возможность заказать гидроцилиндр на сайте значительно сокращает время простоя и финансовые убытки.

Несколько основных неисправностей гидравлики

Чаще всего неисправности проявляются при работе с навесным инструментом. Поэтому и неисправности приводятся на их примере:

  • медленный (более 4 сек.) подъемнавесного оборудования, который сопровождается значительным нагревом гидравлическойжидкости. Может произойти из-за большой внутренней протечки в подвижных сопряжениях вследствие предельного их износа, повреждении резиновых уплотнений, разбалансировке предохранительного клапана;
  • если навесное оборудование поднимается неравномерно (рывками) и рукоятку гидрораспределителя при этом все время выбивает из положения «Подъем», то это говорит о разбалансировке или поломке клапана автоматического возврата золотника;
  • если рукоятка золотника содержится в положении «подъем», а навеска не поднимается и при этом слышно дребезжание изношенного предохранительного клапана, то это значит, что неисправен запорный клапан разрывной муфты или клапан регулировки хода поршня гидроцилиндра.

Если неисправность касается самого гидроцилиндра, то поможет подобрать нужныйгидроцилиндр каталог приведенного сайта. Поможет выбрать гидроцилиндр и цена. Для Москвы и Подмосковья привлекательны для покупателей этого сайта еще и тем, что здесь продавец производит доставку. Для сокращения времени ремонта это очень важно.

Гидравлика что такое

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *